Esempio n. 1
0
                        continue
                    for k in range(dets.shape[0]):
                        f.write('{:f} {:f} {:f} {:f} {:.32f}\n'.format(\
                                 dets[k, 0], dets[k, 1], dets[k, 2], dets[k, 3], dets[k, 4]))

    def evaluate_proposals_msr(self, all_boxes, output_dir):
        # for each image
        for im_ind, index in enumerate(self.image_index):
            filename = os.path.join(output_dir, index + '.txt')
            print('Writing PASCAL results to file ' + filename) # clw modify: for py3
            with open(filename, 'wt') as f:
                dets = all_boxes[im_ind]
                if dets == []:
                    continue
                for k in range(dets.shape[0]):
                    f.write('{:f} {:f} {:f} {:f} {:.32f}\n'.format(dets[k, 0], dets[k, 1], dets[k, 2], dets[k, 3], dets[k, 4]))


    def competition_mode(self, on):
        if on:
            self.config['use_salt'] = False
            self.config['cleanup'] = False
        else:
            self.config['use_salt'] = True
            self.config['cleanup'] = True

if __name__ == '__main__':
    d = datasets.pascal_voc('trainval', '2007')
    res = d.roidb
    from IPython import embed; embed()
Esempio n. 2
0
class pascal_voc(datasets.imdb):
    def __init__(self, image_set, year, pascal_path=None):
        datasets.imdb.__init__(self, 'voc_' + year + '_' + image_set)
        self._year = year
        self._image_set = image_set
        self._pascal_path = self._get_default_path() if pascal_path is None \
            else pascal_path
        self._data_path = os.path.join(self._pascal_path,
                                       'VOCdevkit' + self._year,
                                       'VOC' + self._year)
        self._classes = (
            '__background__',  # always index 0
            'aeroplane',
            'bicycle',
            'bird',
            'boat',
            'bottle',
            'bus',
            'car',
            'cat',
            'chair',
            'cow',
            'diningtable',
            'dog',
            'horse',
            'motorbike',
            'person',
            'pottedplant',
            'sheep',
            'sofa',
            'train',
            'tvmonitor')
        self._class_to_ind = dict(zip(self.classes, range(self.num_classes)))
        self._image_ext = '.jpg'
        self._image_index = self._load_image_set_index()
        # Default to roidb handler
        if cfg.IS_RPN:
            self._roidb_handler = self.gt_roidb
        else:
            self._roidb_handler = self.region_proposal_roidb

        # num of subclasses
        self._num_subclasses = 240 + 1

        # load the mapping for subcalss to class
        filename = os.path.join(self._pascal_path, 'subcategory_exemplars',
                                'mapping.txt')
        assert os.path.exists(filename), 'Path does not exist: {}'.format(
            filename)

        mapping = np.zeros(self._num_subclasses, dtype=np.int)
        with open(filename) as f:
            for line in f:
                words = line.split()
                subcls = int(words[0])
                mapping[subcls] = self._class_to_ind[words[1]]
        self._subclass_mapping = mapping

        # PASCAL specific config options
        self.config = {'cleanup': True, 'use_salt': True, 'top_k': 2000}

        # statistics for computing recall
        self._num_boxes_all = np.zeros(self.num_classes, dtype=np.int)
        self._num_boxes_covered = np.zeros(self.num_classes, dtype=np.int)
        self._num_boxes_proposal = 0

        assert os.path.exists(self._pascal_path), \
            'PASCAL path does not exist: {}'.format(self._pascal_path)
        assert os.path.exists(self._data_path), \
            'Path does not exist: {}'.format(self._data_path)

    def image_path_at(self, i):
        """
        Return the absolute path to image i in the image sequence.
        """
        return self.image_path_from_index(self._image_index[i])

    def image_path_from_index(self, index):
        """
        Construct an image path from the image's "index" identifier.
        """
        image_path = os.path.join(self._data_path, 'JPEGImages',
                                  index + self._image_ext)
        assert os.path.exists(image_path), \
            'Path does not exist: {}'.format(image_path)
        return image_path

    def _load_image_set_index(self):
        """
        Load the indexes listed in this dataset's image set file.
        """
        # Example path to image set file:
        # self._pascal_path + /VOCdevkit2007/VOC2007/ImageSets/Main/val.txt
        image_set_file = os.path.join(self._data_path, 'ImageSets', 'Main',
                                      self._image_set + '.txt')
        assert os.path.exists(image_set_file), \
            'Path does not exist: {}'.format(image_set_file)
        with open(image_set_file) as f:
            image_index = [x.strip() for x in f.readlines()]
        return image_index

    def _get_default_path(self):
        """
        Return the default path where PASCAL VOC is expected to be installed.
        """
        return os.path.join(datasets.ROOT_DIR, 'data', 'PASCAL')

    def gt_roidb(self):
        """
        Return the database of ground-truth regions of interest.

        This function loads/saves from/to a cache file to speed up future calls.
        """
        cache_file = os.path.join(self.cache_path, self.name + '_gt_roidb.pkl')
        if os.path.exists(cache_file):
            with open(cache_file, 'rb') as fid:
                roidb = pickle.load(fid)
            print('{} gt roidb loaded from {}'.format(self.name, cache_file))
            return roidb

        gt_roidb = [
            self._load_pascal_subcategory_exemplar_annotation(index)
            for index in self.image_index
        ]

        if cfg.IS_RPN:
            # print(out recall)
            for i in range(1, self.num_classes):
                print('{}: Total number of boxes {:d}'.format(
                    self.classes[i], self._num_boxes_all[i]))
                print('{}: Number of boxes covered {:d}'.format(
                    self.classes[i], self._num_boxes_covered[i]))
                print('{}: Recall {:f}'.format(
                    self.classes[i],
                    float(self._num_boxes_covered[i]) /
                    float(self._num_boxes_all[i])))

                with open(cache_file, 'wb') as fid:
                    pickle.dump(gt_roidb, fid, pickle.HIGHEST_PROTOCOL)
                print('wrote gt roidb to {}'.format(cache_file))

            return gt_roidb

        def _load_pascal_annotation(self, index):
            """
            Load image and bounding boxes info from XML file in the PASCAL VOC
            format.
            """
            filename = os.path.join(self._data_path, 'Annotations',
                                    index + '.xml')

            # print('Loading: {}'.format(filename)))
            def get_data_from_tag(node, tag):
                return node.getElementsByTagName(tag)[0].childNodes[0].data

            with open(filename) as f:
                data = minidom.parseString(f.read())

            objs = data.getElementsByTagName('object')
            num_objs = len(objs)

            boxes = np.zeros((num_objs, 4), dtype=np.uint16)
            gt_classes = np.zeros((num_objs), dtype=np.int32)
            overlaps = np.zeros((num_objs, self.num_classes), dtype=np.float32)

            # Load object bounding boxes into a data frame.
            for ix, obj in enumerate(objs):
                # Make pixel indexes 0-based
                x1 = float(get_data_from_tag(obj, 'xmin')) - 1
                y1 = float(get_data_from_tag(obj, 'ymin')) - 1
                x2 = float(get_data_from_tag(obj, 'xmax')) - 1
                y2 = float(get_data_from_tag(obj, 'ymax')) - 1
                cls = self._class_to_ind[str(get_data_from_tag(
                    obj, "name")).lower().strip()]
                boxes[ix, :] = [x1, y1, x2, y2]
                gt_classes[ix] = cls
                overlaps[ix, cls] = 1.0

            overlaps = scipy.sparse.csr_matrix(overlaps)
            gt_subclasses = np.zeros((num_objs), dtype=np.int32)
            gt_subclasses_flipped = np.zeros((num_objs), dtype=np.int32)
            subindexes = np.zeros((num_objs, self.num_classes), dtype=np.int32)
            subindexes_flipped = np.zeros((num_objs, self.num_classes),
                                          dtype=np.int32)

            if cfg.IS_RPN:
                if cfg.IS_MULTISCALE:
                    # compute overlaps between grid boxes and gt boxes in multi-scales
                    # rescale the gt boxes
                    boxes_all = np.zeros((0, 4), dtype=np.float32)
                    for scale in cfg.TRAIN.SCALES:
                        boxes_all = np.vstack((boxes_all, boxes * scale))
                    gt_classes_all = np.tile(gt_classes, len(cfg.TRAIN.SCALES))

                    # compute grid boxes
                    s = PIL.Image.open(self.image_path_from_index(index)).size
                    image_height = s[1]
                    image_width = s[0]
                    boxes_grid, _, _ = get_boxes_grid(image_height,
                                                      image_width)

                    # compute overlap
                    overlaps_grid = bbox_overlaps(boxes_grid.astype(np.float),
                                                  boxes_all.astype(np.float))

                    # check how many gt boxes are covered by grids
                    if num_objs != 0:
                        index = np.tile(range(num_objs), len(cfg.TRAIN.SCALES))
                        max_overlaps = overlaps_grid.max(axis=0)
                        fg_inds = []
                        for k in range(1, self.num_classes):
                            fg_inds.extend(
                                np.where((gt_classes_all == k)
                                         & (max_overlaps >=
                                            cfg.TRAIN.FG_THRESH[k - 1]))[0])
                        index_covered = np.unique(index[fg_inds])

                        for i in range(self.num_classes):
                            self._num_boxes_all[i] += len(
                                np.where(gt_classes == i)[0])
                            self._num_boxes_covered[i] += len(
                                np.where(gt_classes[index_covered] == i)[0])
                else:
                    assert len(cfg.TRAIN.SCALES_BASE) == 1
                    scale = cfg.TRAIN.SCALES_BASE[0]
                    feat_stride = 16
                    # faster rcnn region proposal
                    anchors = generate_anchors()
                    num_anchors = anchors.shape[0]

                    # image size
                    s = PIL.Image.open(self.image_path_from_index(index)).size
                    image_height = s[1]
                    image_width = s[0]

                    # height and width of the heatmap
                    height = np.round((image_height * scale - 1) / 4.0 + 1)
                    height = np.floor((height - 1) / 2 + 1 + 0.5)
                    height = np.floor((height - 1) / 2 + 1 + 0.5)

                    width = np.round((image_width * scale - 1) / 4.0 + 1)
                    width = np.floor((width - 1) / 2.0 + 1 + 0.5)
                    width = np.floor((width - 1) / 2.0 + 1 + 0.5)

                    # gt boxes
                    gt_boxes = boxes * scale

                    # 1. Generate proposals from bbox deltas and shifted anchors
                    shift_x = np.arange(0, width) * feat_stride
                    shift_y = np.arange(0, height) * feat_stride
                    shift_x, shift_y = np.meshgrid(shift_x, shift_y)
                    shifts = np.vstack(
                        (shift_x.ravel(), shift_y.ravel(), shift_x.ravel(),
                         shift_y.ravel())).transpose()
                    # add A anchors (1, A, 4) to
                    # cell K shifts (K, 1, 4) to get
                    # shift anchors (K, A, 4)
                    # reshape to (K*A, 4) shifted anchors
                    A = num_anchors
                    K = shifts.shape[0]
                    all_anchors = (anchors.reshape((1, A, 4)) + shifts.reshape(
                        (1, K, 4)).transpose((1, 0, 2)))
                    all_anchors = all_anchors.reshape((K * A, 4))

                    # compute overlap
                    overlaps_grid = bbox_overlaps(all_anchors.astype(np.float),
                                                  gt_boxes.astype(np.float))

                    # check how many gt boxes are covered by anchors
                    if num_objs != 0:
                        max_overlaps = overlaps_grid.max(axis=0)
                        fg_inds = []
                        for k in range(1, self.num_classes):
                            fg_inds.extend(
                                np.where((gt_classes == k)
                                         & (max_overlaps >=
                                            cfg.TRAIN.FG_THRESH[k - 1]))[0])

                        for i in range(self.num_classes):
                            self._num_boxes_all[i] += len(
                                np.where(gt_classes == i)[0])
                            self._num_boxes_covered[i] += len(
                                np.where(gt_classes[fg_inds] == i)[0])

            return {
                'boxes': boxes,
                'gt_classes': gt_classes,
                'gt_subclasses': gt_subclasses,
                'gt_subclasses_flipped': gt_subclasses_flipped,
                'gt_overlaps': overlaps,
                'gt_subindexes': subindexes,
                'gt_subindexes_flipped': subindexes_flipped,
                'flipped': False
            }

        def _load_pascal_subcategory_exemplar_annotation(self, index):
            """
            Load image and bounding boxes info from txt file in the pascal subcategory exemplar format.
            """
            if self._image_set == 'test':
                return self._load_pascal_annotation(index)

            filename = os.path.join(self._pascal_path, 'subcategory_exemplars',
                                    index + '.txt')
            assert os.path.exists(filename), \
                'Path does not exist: {}'.format(filename)

            # the annotation file contains flipped objects
            lines = []
            lines_flipped = []
            with open(filename) as f:
                for line in f:
                    words = line.split()
                    subcls = int(words[1])
                    is_flip = int(words[2])
                    if subcls != -1:
                        if is_flip == 0:
                            lines.append(line)
                        else:
                            lines_flipped.append(line)

            num_objs = len(lines)

            # store information of flipped objects
            assert (num_objs == len(lines_flipped)
                    ), 'The number of flipped objects is not the same!'
            gt_subclasses_flipped = np.zeros((num_objs), dtype=np.int32)

            for ix, line in enumerate(lines_flipped):
                words = line.split()
                subcls = int(words[1])
                gt_subclasses_flipped[ix] = subcls

            boxes = np.zeros((num_objs, 4), dtype=np.float32)
            gt_classes = np.zeros((num_objs), dtype=np.int32)
            gt_subclasses = np.zeros((num_objs), dtype=np.int32)
            overlaps = np.zeros((num_objs, self.num_classes), dtype=np.float32)
            subindexes = np.zeros((num_objs, self.num_classes), dtype=np.int32)
            subindexes_flipped = np.zeros((num_objs, self.num_classes),
                                          dtype=np.int32)

            for ix, line in enumerate(lines):
                words = line.split()
                cls = self._class_to_ind[words[0]]
                subcls = int(words[1])
                # Make pixel indexes 0-based
                boxes[ix, :] = [float(n) - 1 for n in words[3:7]]
                gt_classes[ix] = cls
                gt_subclasses[ix] = subcls
                overlaps[ix, cls] = 1.0
                subindexes[ix, cls] = subcls
                subindexes_flipped[ix, cls] = gt_subclasses_flipped[ix]

            overlaps = scipy.sparse.csr_matrix(overlaps)

            if cfg.IS_RPN:
                if cfg.IS_MULTISCALE:
                    # compute overlaps between grid boxes and gt boxes in multi-scales
                    # rescale the gt boxes
                    boxes_all = np.zeros((0, 4), dtype=np.float32)
                    for scale in cfg.TRAIN.SCALES:
                        boxes_all = np.vstack((boxes_all, boxes * scale))
                    gt_classes_all = np.tile(gt_classes, len(cfg.TRAIN.SCALES))

                    # compute grid boxes
                    s = PIL.Image.open(self.image_path_from_index(index)).size
                    image_height = s[1]
                    image_width = s[0]
                    boxes_grid, _, _ = get_boxes_grid(image_height,
                                                      image_width)

                    # compute overlap
                    overlaps_grid = bbox_overlaps(boxes_grid.astype(np.float),
                                                  boxes_all.astype(np.float))

                    # check how many gt boxes are covered by grids
                    if num_objs != 0:
                        index = np.tile(range(num_objs), len(cfg.TRAIN.SCALES))
                        max_overlaps = overlaps_grid.max(axis=0)
                        fg_inds = []
                        for k in range(1, self.num_classes):
                            fg_inds.extend(
                                np.where((gt_classes_all == k)
                                         & (max_overlaps >=
                                            cfg.TRAIN.FG_THRESH[k - 1]))[0])
                        index_covered = np.unique(index[fg_inds])

                        for i in range(self.num_classes):
                            self._num_boxes_all[i] += len(
                                np.where(gt_classes == i)[0])
                            self._num_boxes_covered[i] += len(
                                np.where(gt_classes[index_covered] == i)[0])
                else:
                    assert len(cfg.TRAIN.SCALES_BASE) == 1
                    scale = cfg.TRAIN.SCALES_BASE[0]
                    feat_stride = 16
                    # faster rcnn region proposal
                    base_size = 16
                    ratios = [3.0, 2.0, 1.5, 1.0, 0.75, 0.5, 0.25]
                    scales = 2**np.arange(1, 6, 0.5)
                    anchors = generate_anchors(base_size, ratios, scales)
                    num_anchors = anchors.shape[0]

                    # image size
                    s = PIL.Image.open(self.image_path_from_index(index)).size
                    image_height = s[1]
                    image_width = s[0]

                    # height and width of the heatmap
                    height = np.round((image_height * scale - 1) / 4.0 + 1)
                    height = np.floor((height - 1) / 2 + 1 + 0.5)
                    height = np.floor((height - 1) / 2 + 1 + 0.5)

                    width = np.round((image_width * scale - 1) / 4.0 + 1)
                    width = np.floor((width - 1) / 2.0 + 1 + 0.5)
                    width = np.floor((width - 1) / 2.0 + 1 + 0.5)

                    # gt boxes
                    gt_boxes = boxes * scale

                    # 1. Generate proposals from bbox deltas and shifted anchors
                    shift_x = np.arange(0, width) * feat_stride
                    shift_y = np.arange(0, height) * feat_stride
                    shift_x, shift_y = np.meshgrid(shift_x, shift_y)
                    shifts = np.vstack(
                        (shift_x.ravel(), shift_y.ravel(), shift_x.ravel(),
                         shift_y.ravel())).transpose()
                    # add A anchors (1, A, 4) to
                    # cell K shifts (K, 1, 4) to get
                    # shift anchors (K, A, 4)
                    # reshape to (K*A, 4) shifted anchors
                    A = num_anchors
                    K = shifts.shape[0]
                    all_anchors = (anchors.reshape((1, A, 4)) + shifts.reshape(
                        (1, K, 4)).transpose((1, 0, 2)))
                    all_anchors = all_anchors.reshape((K * A, 4))

                    # compute overlap
                    overlaps_grid = bbox_overlaps(all_anchors.astype(np.float),
                                                  gt_boxes.astype(np.float))

                    # check how many gt boxes are covered by anchors
                    if num_objs != 0:
                        max_overlaps = overlaps_grid.max(axis=0)
                        fg_inds = []
                        for k in range(1, self.num_classes):
                            fg_inds.extend(
                                np.where((gt_classes == k)
                                         & (max_overlaps >=
                                            cfg.TRAIN.FG_THRESH[k - 1]))[0])

                        for i in range(self.num_classes):
                            self._num_boxes_all[i] += len(
                                np.where(gt_classes == i)[0])
                            self._num_boxes_covered[i] += len(
                                np.where(gt_classes[fg_inds] == i)[0])

            return {
                'boxes': boxes,
                'gt_classes': gt_classes,
                'gt_subclasses': gt_subclasses,
                'gt_subclasses_flipped': gt_subclasses_flipped,
                'gt_overlaps': overlaps,
                'gt_subindexes': subindexes,
                'gt_subindexes_flipped': subindexes_flipped,
                'flipped': False
            }

        def region_proposal_roidb(self):
            """
            Return the database of regions of interest.
            Ground-truth ROIs are also included.

            This function loads/saves from/to a cache file to speed up future calls.
            """
            cache_file = os.path.join(
                self.cache_path, self.name + '_' + cfg.REGION_PROPOSAL +
                '_region_proposal_roidb.pkl')

            if os.path.exists(cache_file):
                with open(cache_file, 'rb') as fid:
                    roidb = pickle.load(fid)
                print('{} roidb loaded from {}'.format(self.name, cache_file))
                return roidb

            if self._image_set != 'test':
                gt_roidb = self.gt_roidb()

                print('Loading region proposal network boxes...')
                model = cfg.REGION_PROPOSAL
                rpn_roidb = self._load_rpn_roidb(gt_roidb, model)
                print('Region proposal network boxes loaded')
                roidb = datasets.imdb.merge_roidbs(rpn_roidb, gt_roidb)
            else:
                print('Loading region proposal network boxes...')
                model = cfg.REGION_PROPOSAL
                roidb = self._load_rpn_roidb(None, model)
                print('Region proposal network boxes loaded')

            print('{} region proposals per image'.format(
                self._num_boxes_proposal / len(self.image_index)))

            with open(cache_file, 'wb') as fid:
                pickle.dump(roidb, fid, pickle.HIGHEST_PROTOCOL)
            print('wrote roidb to {}'.format(cache_file))

            return roidb

        def _load_rpn_roidb(self, gt_roidb, model):
            # set the prefix
            if self._image_set == 'test':
                prefix = model + '/testing'
            else:
                prefix = model + '/training'

            box_list = []
            for index in self.image_index:
                filename = os.path.join(self._pascal_path, 'region_proposals',
                                        prefix, index + '.txt')
                assert os.path.exists(filename), \
                    'RPN data not found at: {}'.format(filename)
                raw_data = np.loadtxt(filename, dtype=float)
                if len(raw_data.shape) == 1:
                    if raw_data.size == 0:
                        raw_data = raw_data.reshape((0, 5))
                    else:
                        raw_data = raw_data.reshape((1, 5))

                x1 = raw_data[:, 0]
                y1 = raw_data[:, 1]
                x2 = raw_data[:, 2]
                y2 = raw_data[:, 3]
                score = raw_data[:, 4]
                inds = np.where((x2 > x1) & (y2 > y1))[0]
                raw_data = raw_data[inds, :4]
                self._num_boxes_proposal += raw_data.shape[0]
                box_list.append(raw_data)

            return self.create_roidb_from_box_list(box_list, gt_roidb)

        def selective_search_roidb(self):
            """
            Return the database of selective search regions of interest.
            Ground-truth ROIs are also included.

            This function loads/saves from/to a cache file to speed up future calls.
            """
            cache_file = os.path.join(
                self.cache_path, self.name + '_selective_search_roidb.pkl')

            if os.path.exists(cache_file):
                with open(cache_file, 'rb') as fid:
                    roidb = pickle.load(fid)
                print('{} ss roidb loaded from {}'.format(
                    self.name, cache_file))
                return roidb

            if int(self._year) == 2007 or self._image_set != 'test':
                gt_roidb = self.gt_roidb()
                ss_roidb = self._load_selective_search_roidb(gt_roidb)
                roidb = datasets.imdb.merge_roidbs(gt_roidb, ss_roidb)
            else:
                roidb = self._load_selective_search_roidb(None)
            with open(cache_file, 'wb') as fid:
                pickle.dump(roidb, fid, pickle.HIGHEST_PROTOCOL)
            print('wrote ss roidb to {}'.format(cache_file))

            return roidb

        def _load_selective_search_roidb(self, gt_roidb):
            filename = os.path.abspath(
                os.path.join(self.cache_path, '..', 'selective_search_data',
                             self.name + '.mat'))
            assert os.path.exists(filename), \
                'Selective search data not found at: {}'.format(filename)
            raw_data = sio.loadmat(filename)['boxes'].ravel()

            box_list = []
            for i in range(raw_data.shape[0]):
                box_list.append(raw_data[i][:, (1, 0, 3, 2)] - 1)

            return self.create_roidb_from_box_list(box_list, gt_roidb)

        def selective_search_IJCV_roidb(self):
            """
            Return the database of selective search regions of interest.
            Ground-truth ROIs are also included.

            This function loads/saves from/to a cache file to speed up future calls.
            """
            cache_file = os.path.join(
                self.cache_path,
                '{:s}_selective_search_IJCV_top_{:d}_roidb.pkl'.format(
                    self.name, self.config['top_k']))

            if os.path.exists(cache_file):
                with open(cache_file, 'rb') as fid:
                    roidb = pickle.load(fid)
                print('{} ss roidb loaded from {}'.format(
                    self.name, cache_file))
                return roidb

            gt_roidb = self.gt_roidb()
            ss_roidb = self._load_selective_search_IJCV_roidb(gt_roidb)
            roidb = datasets.imdb.merge_roidbs(gt_roidb, ss_roidb)
            with open(cache_file, 'wb') as fid:
                pickle.dump(roidb, fid, pickle.HIGHEST_PROTOCOL)
            print('wrote ss roidb to {}'.format(cache_file))

            return roidb

        def _load_selective_search_IJCV_roidb(self, gt_roidb):
            IJCV_path = os.path.abspath(
                os.path.join(self.cache_path, '..',
                             'selective_search_IJCV_data',
                             'voc_' + self._year))
            assert os.path.exists(IJCV_path), \
                'Selective search IJCV data not found at: {}'.format(IJCV_path)

            top_k = self.config['top_k']
            box_list = []
            for i in range(self.num_images):
                filename = os.path.join(IJCV_path,
                                        self.image_index[i] + '.mat')
                raw_data = sio.loadmat(filename)
                box_list.append(
                    (raw_data['boxes'][:top_k, :] - 1).astype(np.uint16))

            return self.create_roidb_from_box_list(box_list, gt_roidb)

        def _write_voc_results_file(self, all_boxes):
            use_salt = self.config['use_salt']
            comp_id = 'comp4'
            if use_salt:
                comp_id += '-{}'.format(os.getpid())

            # VOCdevkit/results/VOC2007/Main/comp4-44503_det_test_aeroplane.txt
            path = os.path.join(self._pascal_path, 'VOCdevkit' + self._year,
                                'results', 'VOC' + self._year, 'Main',
                                comp_id + '_')
            for cls_ind, cls in enumerate(self.classes):
                if cls == '__background__':
                    continue
                print('Writing {} VOC results file'.format(cls))
                filename = path + 'det_' + self._image_set + '_' + cls + '.txt'
                print(filename)
                with open(filename, 'wt') as f:
                    for im_ind, index in enumerate(self.image_index):
                        dets = all_boxes[cls_ind][im_ind]
                        if dets == []:
                            continue
                        # the VOCdevkit expects 1-based indices
                        for k in range(dets.shape[0]):
                            f.write(
                                '{:s} {:.3f} {:.1f} {:.1f} {:.1f} {:.1f}\n'.
                                format(index, dets[k, 4], dets[k, 0] + 1,
                                       dets[k, 1] + 1, dets[k, 2] + 1,
                                       dets[k, 3] + 1))
            return comp_id

        def _do_matlab_eval(self, comp_id, output_dir='output'):
            rm_results = self.config['cleanup']

            path = os.path.join(os.path.dirname(__file__),
                                'VOCdevkit-matlab-wrapper')
            cmd = 'cd {} && '.format(path)
            cmd += '{:s} -nodisplay -nodesktop '.format(datasets.MATLAB)
            cmd += '-r "dbstop if error; '
            cmd += 'voc_eval(\'{:s}\',\'{:s}\',\'{:s}\',\'{:s}\',{:d}); quit;"' \
                .format(self._pascal_path + '/VOCdevkit' + self._year, comp_id,
                        self._image_set, output_dir, int(rm_results))
            print('Running:\n{}'.format(cmd))
            status = subprocess.call(cmd, shell=True)

            # evaluate detection results

        def evaluate_detections(self, all_boxes, output_dir):
            comp_id = self._write_voc_results_file(all_boxes)
            self._do_matlab_eval(comp_id, output_dir)

        def evaluate_proposals(self, all_boxes, output_dir):
            # for each image
            for im_ind, index in enumerate(self.image_index):
                filename = os.path.join(output_dir, index + '.txt')
                print('Writing PASCAL results to file ' + filename)
                with open(filename, 'wt') as f:
                    # for each class
                    for cls_ind, cls in enumerate(self.classes):
                        if cls == '__background__':
                            continue
                        dets = all_boxes[cls_ind][im_ind]
                        if dets == []:
                            continue
                        for k in range(dets.shape[0]):
                            f.write('{:f} {:f} {:f} {:f} {:.32f}\n'.format( \
                                dets[k, 0], dets[k, 1], dets[k, 2], dets[k, 3], dets[k, 4]))

        def evaluate_proposals_msr(self, all_boxes, output_dir):
            # for each image
            for im_ind, index in enumerate(self.image_index):
                filename = os.path.join(output_dir, index + '.txt')
                print('Writing PASCAL results to file ' + filename)
                with open(filename, 'wt') as f:
                    dets = all_boxes[im_ind]
                    if dets == []:
                        continue
                    for k in range(dets.shape[0]):
                        f.write('{:f} {:f} {:f} {:f} {:.32f}\n'.format(
                            dets[k, 0], dets[k, 1], dets[k, 2], dets[k, 3],
                            dets[k, 4]))

        def competition_mode(self, on):
            if on:
                self.config['use_salt'] = False
                self.config['cleanup'] = False
            else:
                self.config['use_salt'] = True
                self.config['cleanup'] = True

    if __name__ == '__main__':
        d = datasets.pascal_voc('trainval', '2007')
        res = d.roidb
Esempio n. 3
0
        
        status = subprocess.call(cmd, shell=True)
        """        
        process = subprocess.Popen(cmd, shell=True, stdout=subprocess.PIPE, stderr=subprocess.STDOUT)

        while True:
            buff = process.stdout.readline()
            if buff == '' and process.poll() != None: 
                break
            sys.stdout.write(buff)
        process.wait()
        """


    def evaluate_detections(self, all_boxes, output_dir):
        comp_id = self._write_voc_results_file(all_boxes)
        self._do_matlab_eval(comp_id, output_dir)

    def competition_mode(self, on):
        if on:
            self.config['use_salt'] = False
            self.config['cleanup'] = False
        else:
            self.config['use_salt'] = True
            self.config['cleanup'] = True

if __name__ == '__main__':
    d = datasets.pascal_voc('trainval', '2007')
    res = d.roidb
    from IPython import embed; embed()
Esempio n. 4
0
        path = os.path.join(os.path.dirname(__file__),
                            'VOCdevkit-matlab-wrapper')
        cmd = 'cd {} && '.format(path)
        cmd += '{:s} -nodisplay -nodesktop '.format(datasets.MATLAB)
        cmd += '-r "dbstop if error; '
        cmd += 'voc_eval(\'{:s}\',\'{:s}\',\'{:s}\',\'{:s}\',{:d}); quit;"' \
               .format(self._devkit_path, comp_id,
                       self._image_set, output_dir, int(rm_results))
        print('Running:\n{}'.format(cmd))
        status = subprocess.call(cmd, shell=True)

    def evaluate_detections(self, all_boxes, output_dir):
        comp_id = self._write_voc_results_file(all_boxes)
        self._do_matlab_eval(comp_id, output_dir)

    def competition_mode(self, on):
        if on:
            self.config['use_salt'] = False
            self.config['cleanup'] = False
        else:
            self.config['use_salt'] = True
            self.config['cleanup'] = True


if __name__ == '__main__':
    d = datasets.pascal_voc('Train', '/home/ubuntu/grapes')
    res = d.roidb
    from IPython import embed
    embed()