def collapse_channels(dataset:datasets.ClassificationDataset): if dataset.dataformat=="NHWC": axis=3 else: axis=1 dataset.x_train = dataset.x_train.mean(axis=axis,keepdims=True) dataset.x_test = dataset.x_test.mean(axis=axis,keepdims=True)
def expand_channels(dataset:datasets.ClassificationDataset,c:int): if dataset.dataformat=="NHWC": axis=3 else: axis=1 dataset.x_train = np.repeat(dataset.x_train,c,axis=axis) dataset.x_test = np.repeat(dataset.x_test, c, axis=axis)
def resize(dataset:datasets.ClassificationDataset,h:int,w:int,c:int): if dataset.dataformat=="NCHW": dataset.x_train=np.transpose(dataset.x_train,axes=(0,2,3,1)) dataset.x_test = np.transpose(dataset.x_test, axes=(0, 2, 3, 1)) subsets = [dataset.x_train, dataset.x_test] new_subsets=[np.zeros((s.shape[0],h,w,c)) for s in subsets] for (subset,new_subset) in zip(subsets,new_subsets): for i in range(subset.shape[0]): img=subset[i, :] if c==1: #remove channel axis, resize, put again img=img[:,:,0] img= cv2.resize(img, dsize=(h, w)) img = img[:, :, np.newaxis] else: #resize img = cv2.resize(img, dsize=(h, w)) new_subset[i,:]=img dataset.x_train = new_subsets[0] dataset.x_test = new_subsets[1] if dataset.dataformat=="NCHW": dataset.x_train = np.transpose(dataset.x_train,axes=(0,3,1,2)) dataset.x_test = np.transpose(dataset.x_test, axes=(0, 3, 1, 2))
def print_summary(dataset: datasets.ClassificationDataset, p: training.Parameters, o: training.Options, min_accuracy: float): print("Parameters: ", p) print("Options: ", o) print("Min accuracy: ", min_accuracy) print(f"Dataset {p.dataset}.") print(dataset.summary()) print(f"Model {p.model}.") if len(p.savepoints): epochs_str = ", ".join([str(sp) for sp in p.savepoints]) print(f"Savepoints at epochs {epochs_str}.")
def adapt_dataset(dataset:datasets.ClassificationDataset, dataset_template:str): dataset_template = datasets.get_classification(dataset_template) h,w,c= dataset_template.input_shape del dataset_template oh,ow,oc=dataset.input_shape # fix channels if c !=oc and oc==1: expand_channels(dataset,c) elif c != oc and c ==1: collapse_channels(dataset) else: raise ValueError(f"Cannot transform image with {oc} channels into image with {c} channels.") #fix size if h!=oh or w!=ow: resize(dataset,h,w,c) dataset.input_shape=(h,w,c)
def main(): parser = HfArgumentParser( (ModelArguments, DataTrainingArguments, TrainingArguments)) model_args, data_args, training_args = parser.parse_args_into_dataclasses() if (os.path.exists(training_args.output_dir) and os.listdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir): raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. Use --overwrite_output_dir to overcome." ) # Setup logging logger = logging.getLogger(__name__) logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN, handlers=[ logging.FileHandler(training_args.logging_dir + "/logging.log", 'w', encoding='utf-8'), logging.StreamHandler() ]) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s", training_args.local_rank, training_args.device, training_args.n_gpu, bool(training_args.local_rank != -1), training_args.fp16, ) logger.info("Training/evaluation parameters %s", training_args) # Get model name model_name = model_args.model_name_or_path \ if model_args.model_name_or_path is not None \ else MODEL[model_args.model.lower()] \ if model_args.model.lower() in MODEL \ else model_args.model # Set seed set_seed(training_args.seed) # Set model config = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_name, cache_dir=model_args.cache_dir, num_labels=data_args.num_labels) tokenizer = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_name, cache_dir=model_args.cache_dir) model = AutoModelForSequenceClassification.from_pretrained( model_name, config=config, cache_dir=model_args.cache_dir) # Set dataset train = ClassificationDataset( data_args.data_dir, tokenizer, data_args.task_name, data_args.max_seq_length, data_args.overwrite_cache, "train") if training_args.do_train else None dev = ClassificationDataset(data_args.data_dir, tokenizer, data_args.task_name, data_args.max_seq_length, data_args.overwrite_cache, "dev") if training_args.do_eval else None test = ClassificationDataset(data_args.data_dir, tokenizer, data_args.task_name, data_args.max_seq_length, data_args.overwrite_cache, "test") if training_args.do_predict else None # Set trainer trainer = Trainer( model=model, args=training_args, train_dataset=train, eval_dataset=dev, compute_metrics=metrics_fn, ) # Training if training_args.do_train: trainer.train( model_path=model_name if os.path.isdir(model_name) else None) trainer.save_model() if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir) # Validation if training_args.do_eval: logger.info("*** Evaluate ***") result = trainer.evaluate() output_eval_file = os.path.join(training_args.output_dir, "eval_results.txt") if trainer.is_world_master(): with open(output_eval_file, "w") as writer: logger.info("***** Eval results *****") for key, value in result.items(): logger.info(" %s = %s", key, value) writer.write("%s = %s\n" % (key, value)) logger.info("Validation set result : {}".format(result)) # Test prediction if training_args.do_predict: logger.info("*** Test ***") predictions = trainer.predict(test_dataset=test) output_test_file = os.path.join(training_args.output_dir, "test_results.txt") if trainer.is_world_master(): with open(output_test_file, "w") as writer: logger.info("***** Test results *****") logger.info("{}".format(predictions)) writer.write("prediction : \n{}\n\n".format( prediction(predictions.predictions).tolist())) if predictions.label_ids is not None: writer.write("ground truth : \n{}\n\n".format( predictions.label_ids.tolist())) writer.write("metrics : \n{}\n\n".format( predictions.metrics))
import numpy as np import time import argparse parser = argparse.ArgumentParser(description='inf') parser.add_argument('--train-path', type=str, default='data/class_train.csv') parser.add_argument('--test-path', type=str, default='data/class_test.csv') parser.add_argument('--data-path', type=str, default='data/class_images/') parser.add_argument('--batch-size', type=int, default=64) parser.add_argument('--use-cuda', dest='use_cuda', action='store_true') parser.set_defaults(use_cuda=False) args = parser.parse_args() gpu = args.use_cuda train_data = ClassificationDataset(args.train_path, args.data_path, train=True) test_data = ClassificationDataset(args.test_path, args.data_path, train=False) train_loader = torch.utils.data.DataLoader(train_data, batch_size=args.batch_size, shuffle=True, num_workers=6) test_loader = torch.utils.data.DataLoader(test_data, batch_size=16) model = torchvision.models.resnet18(pretrained=True) model.fc = nn.Linear(512, 1) if gpu: model = model.to('cuda') optimizer = optim.Adam(model.parameters(), lr=1e-3) bce_loss = nn.BCEWithLogitsLoss()
def main(): # Get arguments parser = HfArgumentParser( (ModelArguments, DataTrainingArguments, TrainingArguments)) model_args, data_args, training_args = parser.parse_args_into_dataclasses() # Path check and set logger path_checker(training_args) set_logger(training_args) # Get model name model_name = model_args.model_name_or_path \ if model_args.model_name_or_path is not None \ else MODEL[model_args.model.lower()] \ if model_args.model.lower() in MODEL \ else model_args.model # Set seed set_seed(training_args.seed) # Set model config = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_name, cache_dir=model_args.cache_dir, num_labels=data_args.num_labels) tokenizer = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_name, cache_dir=model_args.cache_dir) model = AutoModelForSequenceClassification.from_pretrained( model_name, config=config, cache_dir=model_args.cache_dir) # Set dataset train = ClassificationDataset( data_args.data_dir, tokenizer, data_args.task_name, data_args.max_seq_length, data_args.overwrite_cache, mode="train") if training_args.do_train else None dev = ClassificationDataset(data_args.data_dir, tokenizer, data_args.task_name, data_args.max_seq_length, data_args.overwrite_cache, mode="dev") if training_args.do_eval else None test = ClassificationDataset( data_args.data_dir, tokenizer, data_args.task_name, data_args.max_seq_length, data_args.overwrite_cache, mode="test") if training_args.do_predict else None # Set trainer trainer = Trainer( model=model, args=training_args, train_dataset=train, eval_dataset=dev, compute_metrics=metrics_fn, ) # Set runner runner = Runner(model_name=model_name, trainer=trainer, tokenizer=tokenizer, training_args=training_args, test=test) # Start runner()