Esempio n. 1
0
from skimage import io
# VisualizationSE-
import seaborn as sns
import visdom  # 可视化工具
import torchvision
import scipy.io as scio
import os
from utils import metrics, convert_to_color_, convert_from_color_,\
    display_dataset, display_predictions, explore_spectrums, plot_spectrums, plot_spectrums_, \
    sample_gt, build_dataset, show_results, compute_imf_weights, get_device
from datasets import get_dataset, HyperX, open_file, DATASETS_CONFIG
from CBW import get_model, train, test, save_model
import argparse

dataset_names = [
    v['name'] if 'name' in v.keys() else k for k, v in DATASETS_CONFIG.items()
]  # 提取dataset的名称

# 利用argparse设置参数
# Argument parser for CLI interaction
parser = argparse.ArgumentParser(description="Run deep learning experiments on"
                                 " various hyperspectral datasets")
parser.add_argument(
    '--dataset',
    type=str,
    default='Salinas',
    choices=dataset_names,  # 数据集!!!
    help="Dataset to use. IndianPines; PaviaU; Salinas")
parser.add_argument('--model',
                    type=str,
                    default="CBW",
Esempio n. 2
0
    sample_gt,
    build_dataset,
    show_results,
    compute_imf_weights,
    get_device,
)
from datasets import get_dataset, HyperX, open_file, DATASETS_CONFIG
from models import get_model, train, test, save_model

import argparse

# save train/test split
import scipy.io

dataset_names = [
    v["name"] if "name" in v.keys() else k for k, v in DATASETS_CONFIG.items()
]

# Argument parser for CLI interaction
parser = argparse.ArgumentParser(description="Run deep learning experiments on"
                                 " various hyperspectral datasets")
parser.add_argument("--dataset",
                    type=str,
                    default=None,
                    choices=dataset_names,
                    help="Dataset to use.")
parser.add_argument(
    "--model",
    type=str,
    default=None,
    help="Model to train. Available:\n"