Esempio n. 1
0
    def test_insert_redis(self):
        with patch('redis.Redis', fake_redis) as mock_redis:
            lsh = MinHashLSH(threshold=0.5,
                             num_perm=16,
                             storage_config={
                                 'type': 'redis',
                                 'redis': {
                                     'host': 'localhost',
                                     'port': 6379
                                 }
                             })
            m1 = MinHash(16)
            m1.update("a".encode("utf8"))
            m2 = MinHash(16)
            m2.update("b".encode("utf8"))
            lsh.insert("a", m1)
            lsh.insert("b", m2)
            for t in lsh.hashtables:
                self.assertTrue(len(t) >= 1)
                items = []
                for H in t:
                    items.extend(t[H])
                self.assertTrue(pickle.dumps("a") in items)
                self.assertTrue(pickle.dumps("b") in items)
            self.assertTrue("a" in lsh)
            self.assertTrue("b" in lsh)
            for i, H in enumerate(lsh.keys[pickle.dumps("a")]):
                self.assertTrue(pickle.dumps("a") in lsh.hashtables[i][H])

            m3 = MinHash(18)
            self.assertRaises(ValueError, lsh.insert, "c", m3)
 def find_more_then_threshold(self, threshold, curr_file_name):
     lsh = MinHashLSH(threshold)
     current_m = self.min_hash_text(set(self.file_to_words('/'.join([self.doc_dir, curr_file_name]))))
     for k, v in self.min_hash_dict.iteritems():
         lsh.insert(k, v)
     result = lsh.query(current_m)
     print("Candidates with Jaccard similarity > " + str(threshold), result)
Esempio n. 3
0
 def test_get_counts(self):
     lsh = MinHashLSH(threshold=0.5, num_perm=16)
     m1 = MinHash(16)
     m1.update("a".encode("utf8"))
     m2 = MinHash(16)
     m2.update("b".encode("utf8"))
     lsh.insert("a", m1)
     lsh.insert("b", m2)
     counts = lsh.get_counts()
     self.assertEqual(len(counts), lsh.b)
     for table in counts:
         self.assertEqual(sum(table.values()), 2)
Esempio n. 4
0
 def test__H(self):
     '''
     Check _H output consistent bytes length given
     the same concatenated hash value size
     '''
     mg = WeightedMinHashGenerator(100, sample_size=128)
     for l in range(2, mg.sample_size + 1, 16):
         m = mg.minhash(np.random.randint(1, 99999999, 100))
         lsh = MinHashLSH(num_perm=128)
         lsh.insert("m", m)
         sizes = [len(H) for ht in lsh.hashtables for H in ht]
         self.assertTrue(all(sizes[0] == s for s in sizes))
Esempio n. 5
0
    def test_pickle(self):
        lsh = MinHashLSH(threshold=0.5, num_perm=4)
        mg = WeightedMinHashGenerator(10, 4)
        m1 = mg.minhash(np.random.uniform(1, 10, 10))
        m2 = mg.minhash(np.random.uniform(1, 10, 10))
        lsh.insert("a", m1)
        lsh.insert("b", m2)

        result = lsh.query(m1)
        self.assertTrue("a" in result)
        result = lsh.query(m2)
        self.assertTrue("b" in result)
Esempio n. 6
0
 def test_pickle(self):
     lsh = MinHashLSH(threshold=0.5, num_perm=16)
     m1 = MinHash(16)
     m1.update("a".encode("utf8"))
     m2 = MinHash(16)
     m2.update("b".encode("utf8"))
     lsh.insert("a", m1)
     lsh.insert("b", m2)
     lsh2 = pickle.loads(pickle.dumps(lsh))
     result = lsh.query(m1)
     self.assertTrue("a" in result)
     result = lsh.query(m2)
     self.assertTrue("b" in result)
Esempio n. 7
0
 def test__H(self):
     '''
     Check _H output consistent bytes length given
     the same concatenated hash value size
     '''
     for l in range(2, 128 + 1, 16):
         lsh = MinHashLSH(num_perm=128)
         m = MinHash()
         m.update("abcdefg".encode("utf8"))
         m.update("1234567".encode("utf8"))
         lsh.insert("m", m)
         sizes = [len(H) for ht in lsh.hashtables for H in ht]
         self.assertTrue(all(sizes[0] == s for s in sizes))
Esempio n. 8
0
 def test_pickle(self):
     lsh = MinHashLSH(threshold=0.5, num_perm=16)
     m1 = MinHash(16)
     m1.update("a".encode("utf8"))
     m2 = MinHash(16)
     m2.update("b".encode("utf8"))
     lsh.insert("a", m1)
     lsh.insert("b", m2)
     lsh2 = pickle.loads(pickle.dumps(lsh))
     result = lsh.query(m1)
     self.assertTrue("a" in result)
     result = lsh.query(m2)
     self.assertTrue("b" in result)
Esempio n. 9
0
def eg2():
    mg = WeightedMinHashGenerator(10, 5)
    m1 = mg.minhash(v1)
    m2 = mg.minhash(v2)
    m3 = mg.minhash(v3)
    print("Estimated Jaccard m1, m2", m1.jaccard(m2))
    print("Estimated Jaccard m1, m3", m1.jaccard(m3))
    # Create LSH index
    lsh = MinHashLSH(threshold=0.1, num_perm=5)
    lsh.insert("m2", m2)
    lsh.insert("m3", m3)
    result = lsh.query(m1)
    print("Approximate neighbours with weighted Jaccard similarity > 0.1",
          result)
Esempio n. 10
0
    def test_query(self):
        lsh = MinHashLSH(threshold=0.5, num_perm=16)
        m1 = MinHash(16)
        m1.update("a".encode("utf8"))
        m2 = MinHash(16)
        m2.update("b".encode("utf8"))
        lsh.insert("a", m1)
        lsh.insert("b", m2)
        result = lsh.query(m1)
        self.assertTrue("a" in result)
        result = lsh.query(m2)
        self.assertTrue("b" in result)

        m3 = MinHash(18)
        self.assertRaises(ValueError, lsh.query, m3)
Esempio n. 11
0
    def test_query(self):
        lsh = MinHashLSH(threshold=0.5, num_perm=16)
        m1 = MinHash(16)
        m1.update("a".encode("utf8"))
        m2 = MinHash(16)
        m2.update("b".encode("utf8"))
        lsh.insert("a", m1)
        lsh.insert("b", m2)
        result = lsh.query(m1)
        self.assertTrue("a" in result)
        result = lsh.query(m2)
        self.assertTrue("b" in result)

        m3 = MinHash(18)
        self.assertRaises(ValueError, lsh.query, m3)
Esempio n. 12
0
    def test_remove(self):
        lsh = MinHashLSH(threshold=0.5, num_perm=4)
        mg = WeightedMinHashGenerator(10, 4)
        m1 = mg.minhash(np.random.uniform(1, 10, 10))
        m2 = mg.minhash(np.random.uniform(1, 10, 10))
        lsh.insert("a", m1)
        lsh.insert("b", m2)

        lsh.remove("a")
        self.assertTrue("a" not in lsh.keys)
        for table in lsh.hashtables:
            for H in table:
                self.assertGreater(len(table[H]), 0)
                self.assertTrue("a" not in table[H])

        self.assertRaises(ValueError, lsh.remove, "c")
Esempio n. 13
0
    def test_remove(self):
        lsh = MinHashLSH(threshold=0.5, num_perm=16)
        m1 = MinHash(16)
        m1.update("a".encode("utf8"))
        m2 = MinHash(16)
        m2.update("b".encode("utf8"))
        lsh.insert("a", m1)
        lsh.insert("b", m2)

        lsh.remove("a")
        self.assertTrue("a" not in lsh.keys)
        for table in lsh.hashtables:
            for H in table:
                self.assertGreater(len(table[H]), 0)
                self.assertTrue("a" not in table[H])

        self.assertRaises(ValueError, lsh.remove, "c")
Esempio n. 14
0
    def _create_min_hashes(self):
        print_now('Start creating min hashes')
        min_hashes = []
        for (event_id, _, stacktrace) in self.data:
            if stacktrace is None: continue

            l_set = set(stacktrace.lower().replace(',', ' ').split())
            m = MinHash(num_perm=NUM_PERM)
            for d in l_set:
                m.update(d.encode('utf8'))
            min_hashes.append((event_id, m))

        lsh = MinHashLSH(threshold=0.5, num_perm=NUM_PERM)
        for event_id, m in min_hashes:
            lsh.insert(event_id, m)

        return (min_hashes, lsh)
Esempio n. 15
0
    def test_remove(self):
        lsh = MinHashLSH(threshold=0.5, num_perm=16)
        m1 = MinHash(16)
        m1.update("a".encode("utf8"))
        m2 = MinHash(16)
        m2.update("b".encode("utf8"))
        lsh.insert("a", m1)
        lsh.insert("b", m2)
        
        lsh.remove("a")
        self.assertTrue("a" not in lsh.keys)
        for table in lsh.hashtables:
            for H in table:
                self.assertGreater(len(table[H]), 0)
                self.assertTrue("a" not in table[H])

        self.assertRaises(ValueError, lsh.remove, "c")
Esempio n. 16
0
def eg1():
    m1 = MinHash()
    m2 = MinHash()
    m3 = MinHash()
    for d in data1:
        m1.update(d.encode('utf8'))
    for d in data2:
        m2.update(d.encode('utf8'))
    for d in data3:
        m3.update(d.encode('utf8'))

    # Create LSH index
    lsh = MinHashLSH(threshold=0.5)
    lsh.insert("m2", m2)
    lsh.insert("m3", m3)
    result = lsh.query(m1)
    print("Approximate neighbours with Jaccard similarity > 0.5", result)
Esempio n. 17
0
def eg1():
    m1 = MinHash()
    m2 = MinHash()
    m3 = MinHash()
    for d in data1:
        m1.update(d.encode('utf8'))
    for d in data2:
        m2.update(d.encode('utf8'))
    for d in data3:
        m3.update(d.encode('utf8'))

    # Create LSH index
    lsh = MinHashLSH(threshold=0.5)
    lsh.insert("m2", m2)
    lsh.insert("m3", m3)
    result = lsh.query(m1)
    print("Approximate neighbours with Jaccard similarity > 0.5", result)
Esempio n. 18
0
    def test_insert(self):
        lsh = MinHashLSH(threshold=0.5, num_perm=16)
        m1 = MinHash(16)
        m1.update("a".encode("utf8"))
        m2 = MinHash(16)
        m2.update("b".encode("utf8"))
        lsh.insert("a", m1)
        lsh.insert("b", m2)
        for t in lsh.hashtables:
            self.assertTrue(len(t) >= 1)
            items = []
            for H in t:
                items.extend(t[H])
            self.assertTrue("a" in items)
            self.assertTrue("b" in items)

        m3 = MinHash(18)
        self.assertRaises(ValueError, lsh.insert, "c", m3)
Esempio n. 19
0
    def test_insert(self):
        lsh = MinHashLSH(threshold=0.5, num_perm=16)
        m1 = MinHash(16)
        m1.update("a".encode("utf8"))
        m2 = MinHash(16)
        m2.update("b".encode("utf8"))
        lsh.insert("a", m1)
        lsh.insert("b", m2)
        for t in lsh.hashtables:
            self.assertTrue(len(t) >= 1)
            items = []
            for H in t:
                items.extend(t[H])
            self.assertTrue("a" in items)
            self.assertTrue("b" in items)
        self.assertTrue("a" in lsh)
        self.assertTrue("b" in lsh)
        for i, H in enumerate(lsh.keys["a"]):
            self.assertTrue("a" in lsh.hashtables[i][H])

        m3 = MinHash(18)
        self.assertRaises(ValueError, lsh.insert, "c", m3)
Esempio n. 20
0
    def test_insert(self):
        lsh = MinHashLSH(threshold=0.5, num_perm=4)
        mg = WeightedMinHashGenerator(10, 4)
        m1 = mg.minhash(np.random.uniform(1, 10, 10))
        m2 = mg.minhash(np.random.uniform(1, 10, 10))
        lsh.insert("a", m1)
        lsh.insert("b", m2)
        for t in lsh.hashtables:
            self.assertTrue(len(t) >= 1)
            items = []
            for H in t:
                items.extend(t[H])
            self.assertTrue("a" in items)
            self.assertTrue("b" in items)
        self.assertTrue("a" in lsh)
        self.assertTrue("b" in lsh)
        for i, H in enumerate(lsh.keys["a"]):
            self.assertTrue("a" in lsh.hashtables[i][H])

        mg = WeightedMinHashGenerator(10, 5)
        m3 = mg.minhash(np.random.uniform(1, 10, 10))
        self.assertRaises(ValueError, lsh.insert, "c", m3)
Esempio n. 21
0
    def test_query_redis(self):
        with patch('redis.Redis', fake_redis) as mock_redis:
            lsh = MinHashLSH(threshold=0.5,
                             num_perm=16,
                             storage_config={
                                 'type': 'redis',
                                 'redis': {
                                     'host': 'localhost',
                                     'port': 6379
                                 }
                             })
            m1 = MinHash(16)
            m1.update("a".encode("utf8"))
            m2 = MinHash(16)
            m2.update("b".encode("utf8"))
            lsh.insert("a", m1)
            lsh.insert("b", m2)
            result = lsh.query(m1)
            self.assertTrue("a" in result)
            result = lsh.query(m2)
            self.assertTrue("b" in result)

            m3 = MinHash(18)
            self.assertRaises(ValueError, lsh.query, m3)
Esempio n. 22
0
Question with similar minHash are candidates to be similar. 
To compare if two candidate senteces are similar we are using jaccard similarity  
"""

df = pd.read_csv("proccessed.csv")
total_questions = df.shape[0]
threshold_jacard = 0.30
lsh = MinHashLSH(threshold=threshold_jacard)

#calculate minhash for each sentence in column question1
for index, row in df.iterrows():
    min_Hash = MinHash()
    question = tokenize_sentence(str(row['question1']))
    for word in question:
        min_Hash.update(word.encode('utf8'))
    lsh.insert(str(index), min_Hash)

total = 0
return_result = 0
correct = 0
total_correct = 0
#for each sentense in column question2 find similar questions
for i in range(0, total_questions):
    question_minHash = MinHash()
    question = tokenize_sentence(str(df['question2'][i]))
    for word in question:
        question_minHash.update(word.encode('utf8'))
    candidates = lsh.query(question_minHash)
    result = []
    #check which candidates are similar with the sentence
    for j in range(len(candidates)):