Esempio n. 1
0
 def test_concise_reference_testing(self):
     """Should be able to use a two-item RepeatingContainer to
     easily compare results by unpacking the RepeatingContainer
     directly in to the validate() function call.
     """
     compare = datatest.RepeatingContainer(['foo', 'FOO'])
     datatest.validate(*compare.lower())
Esempio n. 2
0
def test_population_format(detail):
    data = detail({'population'})

    def integer_format(x):  # <- Helper function.
        return str(x).isdecimal()

    validate(data, integer_format)
Esempio n. 3
0
def test_named_entities_feature(clean_df):
    '''
    Tests that the proper columns are created when using create_named_entities_feature().
    Specifically there should be 12 columns, all containing float values corresponding to the
    count of the respective entity types in each message
    '''

    test_df = create_named_entities_feature(clean_df)

    required_columns = {'PERSON',
                        'NORP',
                        'FAC',
                        'ORG',
                        'GPE',
                        'LOC',
                        'PRODUCT',
                        'EVENT',
                        'LANGUAGE',
                        'DATE',
                        'TIME',
                        'MONEY'}

    with accepted(Extra):
        validate(test_df.columns, required_columns)

    for column in list(required_columns):
        validate(test_df[column], float)
Esempio n. 4
0
def test_using_regex():
    """Check that values match the given pattern."""
    data = ['bake', 'cake', 'bake']

    regex = re.compile('[bc]ake')

    validate(data, regex)
Esempio n. 5
0
def test_using_list():
    """Check that the order of values match the required sequence."""
    data = ['A', 'B', 'C', 'D', 'E', 'F', 'G']

    requirement = ['A', 'B', 'C', 'D', 'E', 'F', 'G']

    validate(data, requirement)
Esempio n. 6
0
def test_using_set():
    """Check for set membership."""
    data = ['A', 'B', 'A']

    requirement = {'A', 'B'}

    validate(data, requirement)
Esempio n. 7
0
def test_using_tuple():
    """Check that tuples of values satisfy corresponding tuple of
    requirements.
    """
    data = [('A', 0.0), ('A', 1.0), ('A', 2)]
    requirement = ('A', float)
    datatest.validate(data, requirement)
Esempio n. 8
0
def test_a(df):
    """
    Check that a column has especific values
    """
    data = df['A'].values
    requirement = {'x', 'y', 'z'}
    dt.validate(data, requirement)
Esempio n. 9
0
 def test_concise_reference_testing(self):
     """Should be able to use a two-item ProxyGroup to easily
     compare results by unpacking the ProxyGroup directly in to
     the validate() function call.
     """
     compare = datatest.ProxyGroup(['foo', 'FOO'])
     datatest.validate(*compare.lower())
Esempio n. 10
0
def get_indices_anbima(dt, wait=True):
    """
    dt: str '%d/%m/%Y' ou dt obj
    """
    if wait:
        if isinstance(wait,bool): wait = random.randint(1,3)
        sleep(wait)
    
    headers = {"User-Agent": np.random.choice(uas)}
    params["Dt_Ref"] = params["DataIni"] = params["DataFim"] = dt.strftime("%d/%m/%Y")
    r = requests.get(url, params=params, stream=True, headers=headers)
    r.raise_for_status()

    try:
        df = pd.read_csv(io.StringIO(r.text),
                         sep=";",decimal=",",thousands=".",na_values="--",
                         skiprows=1,parse_dates=["Data de Referência"],dayfirst=True,)
        assert df.shape[0] > 0, "0 linhas. "
    except pd.errors.EmptyDataError as e:
        print(dt, e, r.text, sep='\n')
        df = pd.DataFrame(columns=nomes_validos)

    # trata col_names e dtypes
    to_remove = ["<BR>","1.000","R$ mil"," de "," no ","d.u.","%","(",")","*",".",]
    df = df.set_axis(clean_names(df.columns, to_remove), axis=1).astype(valid_dtypes)

    # validacao
    datatest.validate(df.columns, nomes_validos)
    datatest.validate(df.dtypes, valid_dtypes)
    
    return df
Esempio n. 11
0
def test_columns(df):
    dt.validate(
        df.columns,
        {
            'date', 'place', 'fips', 'cases', 'deaths', 'state',
            'change_in_cases', 'change_in_deaths'
        },
    )
def test_traders_columns(traders_df):
    dt.validate(
        traders_df.columns,
        {
            'countryCode', 'firstName', 'lastName', 'traderId', 'stockSymbol',
            'stockName', 'tradeId', 'price', 'volume', 'tradeDate'
        },
    )
def test_get_all_stocks_columns(all_stocks_df):
    dt.validate(
        all_stocks_df.columns, {
            'cotacao', 'p_l', 'p_vp', 'psr', 'divyield', 'p_ativo',
            'p_capgiro', 'p_ebit', 'p_ativ_circliq', 'ev_ebit', 'ev_ebitda',
            'mrg_ebit', 'mrg_liq', 'liq_corr', 'roic', 'roe', 'liq2meses',
            'patrim_liq', 'divbrut_patrim', 'cresc_rec5a'
        })
Esempio n. 14
0
def test_using_function():
    """Check that function returns True."""
    data = [2, 4, 6, 8]

    def iseven(x):
        return x % 2 == 0

    validate(data, iseven)
Esempio n. 15
0
def test_should_apply_calculations():
    df = load_model_results()
    df = apply_calculations(df)
    print(df)
    required_columns = {
        'Contract', 'Price', 'Position', 'New Trade Action', 'Pnl Daily',
        'model', 'commodity', 'pnlYtd', 'pnlLtd', 'mddYtd'
    }
    dt.validate(df.columns, required_columns)
def validate_plumbing_engine(step_plumb, solve_plumb, steady_by, converged,
                             solve_state, step_state, solve_len, time_res):
    with dt.accepted.tolerance(SOLVE_TOL):
        dt.validate(solve_state, step_state, converged)

    assert step_plumb.current_pressures() == step_state
    assert solve_plumb.current_pressures() == solve_state

    assert solve_len < 2 * steady_by / time_res
Esempio n. 17
0
def check_data_old(resp_data, expect_data, validators):
    for validator in validators:
        print(resp_data, expect_data, validator)
        if validator == '==':
            validate(resp_data, expect_data)
        elif validator == 'in':
            validate_in(resp_data, expect_data)
        elif validator.split('_')[0] == 'len':
            assert len(resp_data) == int(validator.split('_')[1])
Esempio n. 18
0
def test_population_sums(detail, summary):
    data = detail({'state/territory': 'population'}).sum()
    requirement = summary({'state/territory': 'population'}).sum()

    omitted_territory = accepted({
        'Jervis Bay Territory': Deviation(-388, 388),
    })

    with accepted.percent(0.03) | omitted_territory:
        validate(data, requirement)
Esempio n. 19
0
def test_state_labels(detail, summary):
    data = detail({'state/territory'})
    requirement = summary({'state/territory'})

    omitted_territory = accepted([
        Missing('Jervis Bay Territory'),
    ])

    with omitted_territory:
        validate(data, requirement)
Esempio n. 20
0
def test_get_stock_columns(stock_df, stock_symbol):
  dt.validate(
    stock_df.columns,
    {
      'tipo', 'empresa', 'setor', 'subsetor', 'cotacao', 'data_ult_cot',
      'min_52_sem', 'max_52_sem', 'vol_med_2m', 'valor_de_mercado',
      'valor_da_firma', 'ult_balanco_processado', 'nro_acoes', 'p_l', 'p_vp',
      'p_ebit', 'psr', 'p_ativos', 'p_cap_giro', 'p_ativ_circ_liq',
      'div_yield', 'ev_ebitda', 'ev_ebit', 'cres_rec_5a'
    }
  )
Esempio n. 21
0
def test_translation_feature(clean_df):
    '''
    Makes sure that a translation feature is created as expected
    and that it only contains values of 0 and 1
    '''
    test_df = create_translation_feature(clean_df)

    with accepted(Extra):
        validate(test_df.columns, {'translated'})

    validate(test_df['translated'], {0, 1})
Esempio n. 22
0
def test_load_model_results():
    df = load_model_results()
    required_columns = {
        'Contract', 'Price', 'Position', 'New Trade Action', 'Pnl Daily',
        'model', 'commodity'
    }
    dt.validate(df.columns, required_columns)
    assert 'Model1' in df['model'].tolist()
    assert 'Model2' in df['model'].tolist()
    assert 'Commodity1' in df['commodity'].tolist()
    assert 'Commodity2' in df['commodity'].tolist()
Esempio n. 23
0
def check_data(resp_body, checkpoints):
    for checkpoint in checkpoints.keys():
        resp_data = jsonpath(resp_body, f'$..{checkpoint}')
        expect_data = checkpoints[checkpoint]
        logger.log_info(f'\nresp_data: {resp_data}\n\
expect_data: {expect_data}')
        try:
            validate(resp_data, expect_data)
        except ValidationError:
            logger.log_error(f"\nresponse_data:{resp_data}\n\
expect_data: {expect_data}")
            raise
Esempio n. 24
0
def test_using_dict():
    """Check that values satisfy requirements of matching keys."""
    data = {
        'A': 100,
        'B': 200,
        'C': 300,
    }
    requirement = {
        'A': 100,
        'B': 200,
        'C': 300,
    }
    validate(data, requirement)
Esempio n. 25
0
    def test_compare_rows(self):
        """Should be able to compare rows by calling a selector by
        its own fieldnames.
        """
        a = self.selector_a
        b = self.selector_b

        # A case we want to optimize.
        datatest.validate(a(a.fieldnames), a(a.fieldnames))

        # A case we want to optimize (using ordered intersection of fieldnames).
        common_fields = tuple(x for x in a.fieldnames if x in b.fieldnames)
        datatest.validate(a(common_fields), b(common_fields))
Esempio n. 26
0
def test_feature_columns(features):
    '''
    Expect that there will be 14 columns in total
    with a very specific set of names
    '''

    required_columns = {
        'message', 'entity_PERSON', 'entity_NORP', 'entity_FAC', 'entity_ORG',
        'entity_GPE', 'entity_LOC', 'entity_PRODUCT', 'entity_EVENT',
        'entity_LANGUAGE', 'entity_DATE', 'entity_TIME', 'entity_MONEY',
        'translated'
    }

    validate(features.columns, required_columns)
Esempio n. 27
0
def test_max_value():
    """Validates values within a list"""
    data = [60, 200, 18, 99, 105]

    def max200(x):
        if x <= 200:
            return True
        return dt.Deviation(x - 200, 200)

    def test_sum():
        assert sum(data) == 482

    # ... add more functions here

    dt.validate(data, max200)
Esempio n. 28
0
    def test_compare_fieldnames(self):
        """Should be able to compare ``fieldnames`` between Selectors
        by simply casting the *requirement* as a set and comparing it
        directly against the ``fieldnames`` parameter of the other
        Selector.
        """
        a = self.selector_a
        b = self.selector_b

        # A case we want to optimize.
        datatest.validate(a.fieldnames, set(a.fieldnames))

        # A case we want to optimize.
        with datatest.allowed.specific(datatest.Extra('C')):
            datatest.validate(a.fieldnames, set(b.fieldnames))
Esempio n. 29
0
def test_merged_columns(df):
    '''
    Checks that DataFrame loading and merge was successful. 
    Specifically checks that 5 columns are present (and no more):
        id
        message
        original
        genre
        categories
    '''

    required_names = {'id', 'message',
                      'original', 'genre',
                      'categories'}

    validate(df.columns, required_names)
Esempio n. 30
0
def test_label_columns(labels):
    '''
    Expect that there will be 36 columns in total
    with a very specific set of names
    '''

    required_columns = {
        'related', 'request', 'offer', 'aid_related', 'medical_help',
        'medical_products', 'search_and_rescue', 'security', 'military',
        'child_alone', 'water', 'food', 'shelter', 'clothing', 'money',
        'missing_people', 'refugees', 'death', 'other_aid',
        'infrastructure_related', 'transport', 'buildings', 'electricity',
        'tools', 'hospitals', 'shops', 'aid_centers', 'other_infrastructure',
        'weather_related', 'floods', 'storm', 'fire', 'earthquake', 'cold',
        'other_weather', 'direct_report'
    }

    validate(labels.columns, required_columns)