def main(
        experiment_name,
        im_ext='.pdf',
        transform_loss=None,  # 'log',
        colors='Paired',
        flip_axis=False,
        port_fwd=False,
        num_steps=np.inf,
        exclude=None,
        list_experiments=False,
        out_dir='analysis_data'):
    """Plot results of provided experiment name."""
    config = Config()
    if list_experiments:
        db.list_experiments()
        return

    if port_fwd:
        config.db_ssh_forward = True
    py_utils.make_dir(out_dir)

    # Get experiment data
    if ',' in experiment_name:
        exps = experiment_name.split(',')
        perf = []
        for exp in exps:
            perf += db.get_performance(experiment_name=exp)
        experiment_name = exps[0]
    else:
        perf = db.get_performance(experiment_name=experiment_name)
    if len(perf) == 0:
        raise RuntimeError('Could not find any results.')

    structure_names = [x['model'].split('/')[-1] for x in perf]
    datasets = [x['val_dataset'] for x in perf]
    steps = [float(x['step']) for x in perf]
    training_loss = [float(x['train_loss']) for x in perf]
    validation_loss = [float(x['val_loss']) for x in perf]
    training_score = [float(x['train_score']) for x in perf]
    validation_score = [float(x['val_score']) for x in perf]
    summary_dirs = [x['summary_path'] for x in perf]
    ckpts = [x['ckpt_path'] for x in perf]
    params = [x['num_params'] for x in perf]
    lrs = [x['lr'] for x in perf]

    # Pass data into a pandas DF
    df = pd.DataFrame(np.vstack(
        (structure_names, datasets, steps, params, training_loss,
         training_score, validation_loss, validation_score, summary_dirs,
         ckpts, lrs)).transpose(),
                      columns=[
                          'model names', 'datasets', 'training iteration',
                          'params', 'training loss', 'training accuracy',
                          'validation loss', 'validation accuracy',
                          'summary_dirs', 'checkpoints', 'lrs'
                      ])
    df['training loss'] = pd.to_numeric(df['training loss'], errors='coerce')
    df['validation accuracy'] = pd.to_numeric(df['validation accuracy'],
                                              errors='coerce')
    df['training accuracy'] = pd.to_numeric(df['training accuracy'],
                                            errors='coerce')
    df['training iteration'] = pd.to_numeric(df['training iteration'],
                                             errors='coerce')
    df['params'] = pd.to_numeric(df['params'], errors='coerce')
    df['lrs'] = pd.to_numeric(df['lrs'], errors='coerce')

    # Plot TTA
    dfs = []
    print(len(df))
    uni_structure_names = np.unique(structure_names)
    max_num_steps = num_steps  # (20000 / 32) * num_epochs
    # min_num_steps = 1
    for m in tqdm(uni_structure_names, total=len(uni_structure_names)):
        it_df = df[df['model names'] == m]
        it_df = it_df[it_df['training iteration'] < max_num_steps]
        # sorted_df = it_df.sort_values('training loss')
        # max_vals = sorted_df.groupby(['datasets']).first()
        sorted_df = []
        different_models = np.unique(it_df['summary_dirs'])
        num_models = len(different_models)
        for model in different_models:
            # Grab each model then sort by training iteration
            sel_data = it_df[it_df['summary_dirs'] == model]
            sel_data = sel_data.sort_values('training iteration')

            # Smooth the sorted validation scores for tta
            sel_data['tta'] = ndimage.gaussian_filter1d(
                sel_data['validation accuracy'], 3)
            sel_data['num_runs'] = num_models
            sorted_df += [sel_data]
        sorted_df = pd.concat(sorted_df)
        dfs += [sorted_df]

    # Get max scores and TTAs
    dfs = pd.concat(dfs)
    scores = dfs.groupby(['lrs', 'datasets', 'model names'],
                         as_index=False).max()  # skipna=True)
    losses = dfs.groupby(['lrs', 'datasets', 'model names'],
                         as_index=False).min()  # skipna=True)
    ttas = dfs.groupby(['lrs', 'datasets', 'model names'],
                       as_index=False).mean()  # skipna=True)

    # Combine into a single DF
    print('Sort by val loss, then validate each (make a new dataloader)')
    scores['tta'] = ttas['validation accuracy']
    scores['validation loss'] = losses['validation loss']

    # Save datasets to csv
    filename = 'raw_data_%s.csv' % experiment_name
    dfs.to_csv(os.path.join(out_dir, filename))
    filename = 'scores_%s.csv' % experiment_name
    scores.to_csv(os.path.join(out_dir, filename))

    # Save an easy-to-parse csv for test datasets and fix for automated processing
    trim_ckpts, trim_models = [], []
    for idx in range(len(scores)):
        ckpt = scores.iloc[idx]['checkpoints']
        ckpt = '%s-%s' % (ckpt, ckpt.split('.')[0].split('_')[-1])
        model = scores.iloc[idx]['model names']
        trim_ckpts += [ckpt]
        trim_models += [model]
    # trimmed_ckpts = pd.DataFrame(trim_ckpts, columns=['checkpoints'])
    # trimmed_models = pd.DataFrame(trim_models, columns=['model'])
    trimmed_ckpts = pd.DataFrame(trim_ckpts)
    trimmed_models = pd.DataFrame(trim_models)
    trimmed_ckpts.to_csv(
        os.path.join(out_dir, 'checkpoints_%s.csv' % experiment_name))
    trimmed_models.to_csv(
        os.path.join(out_dir, 'models_%s.csv' % experiment_name))

    # Add indicator variable to group different model types during plotting
    scores['model_idx'] = 0
    model_groups = ['fgru', 'resnet', 'unet', 'hgru']
    for idx, m in enumerate(model_groups):
        scores['model_idx'][scores['model names'].str.contains(
            m, regex=False)] = idx
    keep_groups = np.where(~np.in1d(model_groups, 'hgru'))[0]
    scores = scores[scores['model_idx'].isin(keep_groups)]

    # Print scores to console
    print scores

    # Create max accuracy plots and aggregated dataset
    num_groups = len(keep_groups)
    # agg_df = []
    f = plt.figure()
    sns.set(context='paper', font='Arial', font_scale=.5)
    sns.set_style("white")
    sns.despine()
    count = 1
    for idx in keep_groups:
        plt.subplot(1, num_groups, count)
        sel_df = scores[scores['model_idx'] == idx]
        # sel_df = sel_df.groupby(
        #     ['datasets', 'model names'], as_index=False).aggregate('max')
        # agg_df += [sel_df]
        sns.pointplot(data=sel_df,
                      x='datasets',
                      y='validation accuracy',
                      hue='model names')
        plt.ylim([0.4, 1.1])
        count += 1
    plt.savefig(os.path.join(out_dir, 'max_%s.png' % experiment_name), dpi=300)
    filename = 'agg_data_%s.csv' % experiment_name
    # agg_df = pd.concat(agg_df)
    # agg_df.to_csv(os.path.join(out_dir, filename))
    plt.close(f)

    # Create tta plots
    f = plt.figure()
    sns.set(context='paper', font='Arial', font_scale=.5)
    sns.set_style("white")
    sns.despine()
    count = 1
    for idx in keep_groups:
        plt.subplot(1, num_groups, count)
        sel_df = scores[scores['model_idx'] == idx]
        # sel_df = sel_df.groupby(
        #     ['datasets', 'model names'], as_index=False).aggregate('mean')
        sns.pointplot(data=sel_df, x='datasets', y='tta', hue='model names')
        plt.ylim([0.4, 1.1])
        count += 1
    plt.savefig(os.path.join(out_dir, 'tta_%s.png' % experiment_name), dpi=300)
    plt.close(f)
Esempio n. 2
0
def main(
        experiment_name,
        im_ext='.pdf',
        transform_loss=None,  # 'log',
        colors='Paired',
        flip_axis=False,
        exclude=None):
    """Plot results of provided experiment name."""
    config = Config()
    pl_creds = credentials.plotly_credentials()
    py.sign_in(
        pl_creds['username'],
        pl_creds['api_key'])

    # Get experiment data
    perf = db.get_performance(experiment_name=experiment_name)
    if len(perf) == 0:
        raise RuntimeError('Could not find any results.')
    structure_names = [x['model_struct'].split('/')[-1] for x in perf]
    optimizers = [x['optimizer'] for x in perf]
    lrs = [x['lr'] for x in perf]
    datasets = [x['dataset'] for x in perf]
    loss_funs = [x['loss_function'] for x in perf]
    optimizers = [x['optimizer'] for x in perf]
    wd_types = [x['regularization_type'] for x in perf]
    wd_penalties = [x['regularization_strength'] for x in perf]
    steps = [float(x['training_step']) for x in perf]
    training_loss = [float(x['training_loss']) for x in perf]
    validation_loss = [float(x['validation_loss']) for x in perf]
    timesteps = [0. if x['timesteps'] is None else float(x['timesteps']) for x in perf]
    u_t = [0. if x['u_t'] is None else float(x['u_t']) for x in perf]
    q_t = [0. if x['q_t'] is None else float(x['q_t']) for x in perf]
    p_t = [0. if x['p_t'] is None else float(x['p_t']) for x in perf]
    t_t = [0. if x['t_t'] is None else float(x['t_t']) for x in perf]

    # Pass data into a pandas DF
    model_params = [
        '%s | %s | %s | %s | %s | %s | %s | %s | %s | %s | %s | %s | %s' % (
            ipa,
            ipb,
            ipc,
            ipd,
            ipe,
            ipf,
            ipg,
            iph,
            ipi,
            ipj,
            ipk,
            ipl,
            ipm)
        for ipa, ipb, ipc, ipd, ipe, ipf, ipg, iph, ipi, ipj, ipk, ipl, ipm
        in zip(
            structure_names,
            optimizers,
            lrs,
            loss_funs,
            optimizers,
            wd_types,
            wd_penalties,
            datasets,
            timesteps,
            u_t,
            q_t,
            p_t,
            t_t)]

    # DF and plot
    df = pd.DataFrame(
        np.vstack(
            (
                model_params,
                steps,
                training_loss,
                validation_loss
            )
        ).transpose(),
        columns=[
            'model parameters',
            'training iteration',
            'training loss',
            'validation loss'
            ]
        )
    df['training iteration'] = pd.to_numeric(
        df['training iteration'],
        errors='coerce')
    df['training loss'] = pd.to_numeric(df['training loss'], errors='coerce')

    if exclude is not None:
        exclusion_search = df['model parameters'].str.contains(exclude)
        df = df[exclusion_search == False]
        print 'Removed %s rows.' % exclusion_search.sum()

    # Start plotting
    experiment_dict = experiments.experiments()[experiment_name]()
    print 'Plotting results for dataset: %s.' % experiment_dict['dataset'][0]
    dataset_module = py_utils.import_module(
        model_dir=config.dataset_info,
        dataset=experiment_dict['dataset'][0])
    dataset_module = dataset_module.data_processing()  # hardcoded class name
    if transform_loss is None:
        loss_label = ''
    elif transform_loss == 'log':
        loss_label = ' log loss'
        df['training loss'] = np.log(df['training loss'])
    elif transform_loss == 'max':
        loss_label = ' normalized (x / max(x)) '
        df['training loss'] /= df.groupby(
            'model parameters')['training loss'].transform(max)
    if ['loss_function'] in experiment_dict.keys():
        loss_metric = experiment_dict['loss_function'][0]
    else:
        loss_metric = dataset_module.default_loss_function
    df['validation loss'] = pd.to_numeric(df['validation loss'])
    if loss_metric == 'pearson':
        loss_label = 'Pearson correlation' + loss_label
    elif loss_metric == 'l2':
        loss_label = 'L2' + loss_label
    else:
        loss_label = 'Classification accuracy (%)'
        df['validation loss'] *= 100.

    if ['score_metric'] in experiment_dict.keys():
        score_metric = experiment_dict['score_metric']
    else:
        score_metric = dataset_module.score_metric
    if score_metric == 'pearson':
        y_lab = 'Pearson correlation'

    matplotlib.style.use('ggplot')
    plt.rc('font', size=6)
    plt.rc('legend', fontsize=8, labelspacing=3)
    f, axs = plt.subplots(2, figsize=(20, 30))
    ax = axs[1]
    NUM_COLORS = len(df['model parameters'].unique())
    cm = plt.get_cmap('gist_rainbow')
    ax.set_color_cycle([cm(1.*i/NUM_COLORS) for i in range(NUM_COLORS)])
    for k in df['model parameters'].unique():
        tmp = df[df['model parameters'] == k]
        tmp = tmp.sort('training iteration')
        ax = tmp.plot(
            x='training iteration',
            y='training loss',
            label=k,
            kind='line',
            ax=ax,
            logy=False)
    plt.setp(ax.xaxis.get_majorticklabels(), rotation=30)
    ax.xaxis.set_major_locator(MaxNLocator(integer=True))
    ax.set_title('Training')
    ax.set_ylabel(loss_label)
    # ax.legend_.remove()
    ax = axs[0]
    ax.set_color_cycle([cm(1.*i/NUM_COLORS) for i in range(NUM_COLORS)])
    for k in df['model parameters'].unique():
        tmp = df[df['model parameters'] == k]
        tmp = tmp.sort('training iteration')
        ax = tmp.plot(
            x='training iteration',
            y='validation loss',
            label=k,
            kind='line',
            ax=ax,
            logy=False)
    plt.setp(ax.xaxis.get_majorticklabels(), rotation=30)
    ax.xaxis.set_major_locator(MaxNLocator(integer=True))
    ax.set_title('Validation')
    # TODO: Mine the experiment declarations for the appropos metric name.
    ax.set_ylabel(y_lab)
    # ax.legend_.remove()
    out_name = os.path.join(
        config.plots,
        '%s_%s%s' % (
            experiment_name, py_utils.get_dt_stamp(), im_ext))
    plt.savefig(out_name)
    print 'Saved to: %s' % out_name
    plotly_fig = tls.mpl_to_plotly(f)
    plotly_fig['layout']['autosize'] = True
    # plotly_fig['layout']['showlegend'] = True
    plot_with_plotly(plotly_fig, 'line')
    plt.close(f)

    # Plot max performance bar graph
    f = plt.figure()
    max_perf = df.groupby(
        ['model parameters'], as_index=False)['validation loss'].max()
    plt.rc('xtick', labelsize=2)
    ax = max_perf.plot.bar(
        x='model parameters', y='validation loss', legend=False)
    plt.tight_layout()
    ax.set_title('Max validation value')
    ax.set_ylabel(y_lab)
    out_name = os.path.join(
        config.plots,
        '%s_%s_bar%s' % (
            experiment_name, py_utils.get_dt_stamp(), im_ext))
    plt.savefig(out_name)
    print 'Saved to: %s' % out_name
    try:
        plotly_fig = tls.mpl_to_plotly(f)
        plot_with_plotly(plotly_fig, chart='bar')
    except Exception as e:
        print 'Failed to plot bar chart in plotly: %s' % e
    plt.close(f)