Esempio n. 1
0
def mongo_mass_update_readings(box, start_date, no_of_days=1):
    # takes box = 'lat_0,long_0,lat_1,long_1', start_date = 2019-12-02
    # calls mongo_update_readings_day(sensor_name_id, current_date)
    #               for each sensor_name_id within box,
    #               for each date between start_date and start_date+no_of_days
    # returns db_readings

    def get_sensor_url_list(box):
        # box = 'lat_0,long_0,lat_1,long_1'
        # returns array of unique sensor ids
        # [{"sensor":...}, {"sensor":...}...]   ==>   ["{name}_sensor_{id}", "{name}_sensor_{id}"... ]
        return (list(
            set(
                map(
                    lambda device:
                    f"{device['sensor']['sensor_type']['name'].lower()}_sensor_{str(device['sensor']['id'])}",
                    get_raw_info(box)))))

    url_list = get_sensor_url_list(box)
    start_date = parse(start_date)

    print("> Starting mass update...")
    for i, sensor_name_id in enumerate(url_list):
        print(f"updating {sensor_name_id} {i+1}/{len(url_list)}")
        for i in range(no_of_days):
            current_date = str((start_date + timedelta(days=i)).date())
            print(f"    updating {sensor_name_id} {current_date}")
            mongo_update_readings_day(sensor_name_id, current_date)
    print("> Finished mass update.")

    return (list(db_query(db_readings)))
Esempio n. 2
0
def get_readings():
    filter_dict = {}
    sensorid = request.args.get('sensorid')
    start = request.args.get('after')
    end = request.args.get('before')
    if sensorid:
        filter_dict["location_id"] = int(sensorid)
    if start or end:
        filter_dict["timestamp"] = {}
        if start:
            filter_dict["timestamp"]["$gte"] = parse(start)
        if end:
            filter_dict["timestamp"]["$lt"] = parse(end)
    output = dumps(db_query(db_readings, filter_dict))
    return Response(output, mimetype='application/json')
Esempio n. 3
0
def mongo_update_readings_day(sensor_name_id, day):
    # takes sensor_name_id = {name}_sensor_{id} & date = 2019-12-25
    # returns parsed readings with bucketing

    def parse_to_mongo(headings, row):
        for i, key in enumerate(headings[6:]):
            i += 6
            if row[i] and row[i] != 'nan':
                db_insert(
                    db_readings, {
                        "location_id": int(row[2]),
                        "timestamp": floor_date(parse(row[5]))
                    }, {f"{luftdaten_dictionary[key]}": floatify(row[i])})

    # raw_readings = [[headings],[row],[row]...]
    raw_readings = get_raw_readings(sensor_name_id, day)

    if raw_readings:
        for row in raw_readings[1:]:
            parse_to_mongo(raw_readings[0], row)
        return (list(db_query(db_readings)))
    else:
        return (False)
Esempio n. 4
0
 def generate():
     for reading in db_query(db_readings, filter_dict):
         yield dumps(reading) + '\n'
Esempio n. 5
0
def get_info():
    output = dumps(db_query(db_info))
    return Response(output, mimetype="application/json")