def create_stats_dict_normal( self ): stats_dict = {} import numpy as np, db_methods as dbm, pickle for view in ( 'TT_Features', 'TF_Features' ): dbm.write_db_table( '.', self.db, view ) a = dbm.table2mem( self.db, view ) a1 = np.array( a ) CSParray = a1[ : , -2: ] print 'CSParray dims :', np.shape( CSParray ) with open( 'CSParray_' + view + '.pickle', 'w') as f: pickle.dump( CSParray, f ) #print a1 means, stdevs = dbm.array2stats( a1[:, :-2] ) #print means #print stdevs alpha, loc, beta = dbm.CSParray2stats( CSParray, self.scaling ) stats_dict[ view ] = { 'drlw' : { 'mean' : means[0], 'stdev' : stdevs[0] }, 'drh' : { 'mean' : means[1], 'stdev' : stdevs[1] }, 'dlwH' : { 'mean' : means[2], 'stdev' : stdevs[2] }, 'dlwN' : { 'mean' : means[3], 'stdev' : stdevs[3] }, 'dheight' : { 'mean' : means[4], 'stdev' : stdevs[4] }, 'dlwHadj' : { 'mean' : means[5], 'stdev' : stdevs[5] }, 'dlwNadj' : { 'mean' : means[6], 'stdev' : stdevs[6] }, 'drlwadj' : { 'mean' : means[7], 'stdev' : stdevs[7] }, 'CSPs' : { 'alpha' : alpha, 'loc' : loc, 'beta' : beta } } #print stats_dict self.stats_dict = stats_dict
def write_db_stats( self ): import sqlite3 as sq3, db_methods as dbm conn = sq3.connect( self.db ) c = conn.cursor() views = [ str(b[0]) for b in c.execute( 'SELECT name from sqlite_master \ where type = \'view\'' ).fetchall() ] for view in views: if view in ( 'TT_Features', 'TF_Features' ): dbm.write_db_table( '.', self.db, view )