def clear(): connection = db_tools.connect() tables = ['Users', 'Forums', 'Threads', 'Posts', 'Follow', 'Subscribe'] db_tools.execute(connection, "SET global foreign_key_checks = 1;") for table in tables: query = "TRUNCATE TABLE %s;" % table db_tools.execute(connection, query) db_tools.execute(connection, "SET global foreign_key_checks = 1;") connection.close() return jsonify({"code": STATUS_CODE['OK'], "response": 'OK'})
def get_data(): x_feats = 7 y_feats = 1 connection = db_tools.connect() cur = connection.cursor() # get number of rows so training array can be built cur.execute("SELECT count(id) FROM answers") data = cur.fetchone() num_rows = data[0] build_X = np.ndarray(shape=(num_rows,x_feats), dtype=float, order='C') build_y = np.ndarray(shape=(num_rows,), dtype=float, order='C') # get all data necessary to train cur.execute("SELECT body,score,commcount,bodysentipolarity,bodysentisubjectivity, links, promptness, acceptedanswer FROM answers") x_indx = 0 y_indx = 0 while True: data = cur.fetchone() if data == None: break body = data[0] bodylen = len(body) score = data[1] commcount = data[2] sentipolarity = data[3] sentisubjectivity = data[4] links = data[5] promptness = data[6] acceptedanswer = data[7] if acceptedanswer == None: aa = 0 else: aa = 1 np.put(build_X, [range(x_indx,x_indx + x_feats)], [bodylen,score,commcount,sentipolarity,sentisubjectivity,links,promptness]) #bodylen,score,commcount,sentipolarity,sentisubjectivity,links,promptness np.put(build_y, [range(y_indx,y_indx + y_feats)], [aa]) x_indx += x_feats y_indx += y_feats return build_X, build_y
def get_data(): connection = db_tools.connect() cur = connection.cursor() q_group = question_group() master_map = defaultdict(int) # get all data necessary to train cur.execute("SELECT body,score,commcount,bodysentipolarity,bodysentisubjectivity,links,promptness,acceptedanswer,pid,id FROM answers") while True: data = cur.fetchone() if data == None: break q_id = data[8] if master_map[q_id] == 0: master_map[q_id] = [q_group.build_object(data)] else: master_map[q_id].append(q_group.build_object(data)) #print master_map #print "\n\n\n\n\n\n" return master_map
elem.clear() while elem.getprevious() is not None: del elem.getparent()[0] if __name__=='__main__': # DATASET MUST BE IN SOURCE FOLDER WITHIN A FOLDER CALLED 'datasets' static_path = os.getcwd() users = static_path+'/../datasets/Users.xml' posts = static_path+'/../datasets/Posts.xml' # connect to the dataset context = etree.iterparse(posts) # connect to the database print("Connecting to DB") connection = db_tools.connect() print("Setting up DB (if necessary)") db_tools.setup_db(connection) print("Populating DB") fast_iter(context, connection, limit=10000) connection.close() del context
#coding:utf-8 import sys import string import db_tools from bson.son import SON mydb=db_tools.connect() items=mydb.service.find({}) for item in items: print item['rating'].encode('utf-8') ''' r=mydb.command(SON([('geoNear', 'service'), ('near', [116.34, 39.99]), ('spherical', True), ('num', 1000), ('distanceMultiplier', 6378137), ('maxDistance', 5000.0/6378137), ('query', {'category': '搬家'})])) for item in r['results']: obj=item['obj'] print obj['telephone'] '''