Esempio n. 1
0
def test_json_conversion_strings_with_leading_zeros():
    runner_ids = np.array(['000000000' + str(x) for x in range(10)])
    df = DDF({'runner_id': runner_ids})
    js = df.to_json()
    newdf = DDF.from_json(js)
    newdf = newdf.colslice(df)
    assert newdf.equals(df)
Esempio n. 2
0
def test_to_json(df):
    with pytest.raises(AssertionError):
        df.to_json()
    df = df.rename(lambda col: str(col))
    df = df.sort('0')
    json = df.to_json()
    newdf = DDF.from_json(json)
    newdf = newdf.sort('0')
    assert newdf.equals(df)
Esempio n. 3
0
def test_json_conversion_preserves_string_dtypes():
    original_df = DDF({
        'runner_id': np.array(['test', 'testing'], dtype='S7'),
        'short_strings': np.array(['a', 'b'], dtype='S1'),
        'more_strings': np.array(['abc', 'def'], dtype='S')
    })

    js = original_df.to_json()
    new_df = DDF.from_json(js)
    new_df = new_df.colslice(original_df)
    assert new_df.equals(original_df)

    for col in ['runner_id', 'short_strings', 'more_strings']:
        assert new_df[col].dtype == original_df[col].dtype
Esempio n. 4
0
def test_json_conversion_datetimes():
    dates = np.array([
        '2013-03-30T00:00:00.000000000', '2014-02-10T00:00:00.000000000',
        '2014-05-12T00:00:00.000000000', '2014-03-17T00:00:00.000000000',
        '2013-04-12T00:00:00.000000000', '2014-05-19T00:00:00.000000000',
        '2014-04-09T00:00:00.000000000', '2014-05-11T00:00:00.000000000',
        '2014-02-25T00:00:00.000000000', '2014-04-24T00:00:00.000000000',
        '2014-05-30T00:00:00.000000000', '2014-02-09T00:00:00.000000000',
        '2014-05-05T00:00:00.000000000'], dtype='<M8[ns]')
    df = DDF({'time': dates})
    js = df.to_json()
    newdf = DDF.from_json(js)
    newdf = newdf.colslice(df)
    assert newdf.equals(df)