Esempio n. 1
0
def evalDeme(deme):
    deme[:] = [toolbox.clone(ind) for ind in toolbox.select(deme, len(deme))]
    #    algorithms_helper.varLambda(toolbox, deme, LAMBDA, 0.5, 0.3)
    algorithms.varOr(deme, toolbox, LAMBDA, 0.5, 0.3)

    for ind in deme:
        ind.fitness.values = toolbox.evaluate(ind)

    return deme
Esempio n. 2
0
def run_evolution(population, ngen, file=None):
    cxpb, mutpb = 0.0, 1

    if not file is None:
        file.write("\nGeneration 0\n")

    fitnesses = toolbox.map(toolbox.evaluate, population)
    for ind, fit in zip(population, fitnesses):
        ind.fitness.values = fit
        if not file is None:
            file.write(str(sortmap(ind)) + ", fitness: " + "{:,}".format(fit[0]) + "\n")
            file.flush()

    population = toolbox.select(population, 1)

    for i in range(ngen):
        file.write("\nGeneration " + str(i+1) + "\n")
        offspring = algorithms.varOr(population, toolbox, 4, cxpb, mutpb)

        fitnesses = toolbox.map(toolbox.evaluate, offspring)
        for ind, fit in zip(offspring, fitnesses):
            ind.fitness.values = fit
            if not file is None:
                file.write(str(sortmap(ind)) + ", fitness: " + "{:,}".format(fit[0]) + "\n")
                file.flush()

        np = toolbox.select(offspring, 1)
        if np[0].fitness.values[0] <= population[0].fitness.values[0]:
            population = np
    return population
Esempio n. 3
0
    def run_ga(self, initial_pop=False, plot=False):
        if initial_pop != False:
            population = initial_pop
        else:
            population = self.toolbox.population(n=self.initial_pop_size)

        fitnesses = list(map(self.toolbox.evaluate, population))
        for ind, fit in zip(population, fitnesses):
            ind.fitness.values = fit

        self.all_pops.append(population)

        for n in tqdm(range(self.generations)):
            self.all_pops.append(population)
            offspring = algorithms.varOr(population,
                                         self.toolbox,
                                         cxpb=self.cxpb,
                                         mutpb=self.mutpb,
                                         lambda_=self.num_children)

            # Evaluate the individuals with an invalid fitness
            invalid_ind = [ind for ind in offspring if not ind.fitness.valid]
            fitnesses = map(self.toolbox.evaluate, invalid_ind)
            for ind, fit in zip(invalid_ind, fitnesses):
                ind.fitness.values = fit

            new_population = population + offspring
            population = self.toolbox.select(new_population,
                                             k=self.num_to_select)

            if plot == True:
                self.model.plot_substrate(self.metrics.substrate)
                self.model.plot_substrate(self.metrics.product)
                plt.show()
Esempio n. 4
0
def eaMuPlusLambda1Gen(population, toolbox, mu, lambda_, cxpb, mutpb, gen):
    """This is the :math:`(\mu + \lambda)` evolutionary algorithm.

    :param population: A list of individuals.
    :param toolbox: A :class:`~deap.base.Toolbox` that contains the evolution
                    operators.
    :param mu: The number of individuals to select for the next generation.
    :param lambda_: The number of children to produce at each generation.
    :param cxpb: The probability that an offspring is produced by crossover.
    :param mutpb: The probability that an offspring is produced by mutation.
    :param gen: The generation number.
    :returns: The offspring and population after 1 generation.

    The algorithm takes in a population and evolves it in place using the
    :meth:`varOr` method. It returns the optimized population and a
    :class:`~deap.tools.Logbook` with the statistics of the evolution (if
    any). The logbook will contain the generation number, the number of
    evaluations for each generation and the statistics if a
    :class:`~deap.tools.Statistics` if any. The *cxpb* and *mutpb* arguments
    are passed to the :func:`varAnd` function. The pseudocode goes as follow
    ::

        evaluate(population)
        for g in range(ngen):
            offspring = varOr(population, toolbox, lambda_, cxpb, mutpb)
            evaluate(offspring)
            population = select(population + offspring, mu)

    First, the individuals having an invalid fitness are evaluated. Second,
    the evolutionary loop begins by producing *lambda_* offspring from the
    population, the offspring are generated by the :func:`varOr` function. The
    offspring are then evaluated and the next generation population is
    selected from both the offspring **and** the population. Finally, when
    *ngen* generations are done, the algorithm returns a tuple with the final
    population and a :class:`~deap.tools.Logbook` of the evolution.

    .. note::

        Care must be taken when the lambda:mu ratio is 1 to 1 as a non-stochastic
        selection will result in no selection at all as
        the operator selects *lambda* individuals from a pool of *mu*.

    This function expects :meth:`toolbox.mate`, :meth:`toolbox.mutate`,
    :meth:`toolbox.select` and :meth:`toolbox.evaluate` aliases to be
    registered in the toolbox. This algorithm uses the :func:`varOr`
    variation.
    """
    # 1 iteration of eaMuPlusLambda (deap.__version__ == '1.0')
    if gen != 0:
        # Vary the population
        offspring = algorithms.varOr(population, toolbox, lambda_, cxpb, mutpb)

        # Select the next generation population
        population[:] = toolbox.select(population + offspring, mu)
    else:
        # Generation 0
        offspring = population

    return offspring, population
def main_parallel():
    Component.resetPfKeeping()
    Component.resetCostKeeping()

    manager = Manager()
    Component.pfkeeping = manager.dict(Component.pfkeeping)
    Component.costkeeping = manager.dict(Component.costkeeping)

    pool = Pool(processes=3)
    toolbox.register("map", pool.map)

    print "MULTIOBJECTIVE OPTIMIZATION: parallel version"
    start_delta_time = time.time()

    # optimization
    random.seed(64)

    npop = 100
    ngen = 50

    stats = tools.Statistics(key=lambda ind: ind.fitness.values)
    stats.register("avg", np.mean, axis=0)
    stats.register("std", np.std, axis=0)
    stats.register("min", np.min, axis=0)
    stats.register("max", np.max, axis=0)
    logbook = tools.Logbook()
    logbook.header = "gen", "evals", "avg", "std", "min", "max"

    pop = toolbox.population(n=npop)
    fits = toolbox.map(toolbox.evaluate, pop)
    for fit,ind in zip(fits, pop):
        ind.fitness.values = fit

    nevals = npop
    allpop = []
    for gen in range(ngen):
        allpop = allpop+pop
        record = stats.compile(pop)
        logbook.record(gen=gen, evals=nevals, **record)
        print(logbook.stream)

        offspring = algorithms.varOr(pop, toolbox, lambda_=npop, cxpb=0.5, mutpb=0.1)
        invalid_ind = [ind for ind in offspring if not ind.fitness.valid]
        nevals = len(invalid_ind)
        fits = toolbox.map(toolbox.evaluate, invalid_ind)
        for fit,ind in zip(fits, invalid_ind):
            ind.fitness.values = fit
        pop = toolbox.select(offspring+pop, k=npop)

    front = toolbox.sort(allpop, k=int(ngen*npop), first_front_only=True)

    pool.close()
    pool.join()

    delta_time = time.time() - start_delta_time
    print 'DONE: {} s'.format(str(datetime.timedelta(seconds=delta_time)))

    return allpop, logbook, front
Esempio n. 6
0
def eaMuPlusLambdaEarlyStop(
        population, toolbox, mu, lambda_, cxpb, mutpb, ngen,
        stats=None, halloffame=None, verbose=__debug__):
    """
        See the documentation regarding :class:`~deap.algorithms.eaMuPlusLambdaEarlyStop`.
        This strategy uses the `earlystop' callable in the toolbox to determine if
        the evolution must stop before the last generation is reached.
    """

    logbook = tools.Logbook()
    logbook.header = ['gen', 'nevals'] + (stats.fields if stats else [])

    # Evaluate the individuals with an invalid fitness
    invalid_ind = [ind for ind in population if not ind.fitness.valid]
    fitnesses = toolbox.map(toolbox.evaluate, invalid_ind)
    for ind, fit in zip(invalid_ind, fitnesses):
        ind.fitness.values = fit

    if halloffame is not None:
        halloffame.update(population)

    record = stats.compile(population) if stats is not None else {}
    logbook.record(gen=0, nevals=len(invalid_ind), **record)
    if verbose:
        print(logbook.stream)

    # Begin the generational process
    gen = 0
    winner = toolbox.select(population, 1)[0]
    earlystop = toolbox.earlystop()
    while gen < ngen and not earlystop(winner):
        # Vary the population
        offspring = algorithms.varOr(population, toolbox, lambda_, cxpb, mutpb)

        # Evaluate the individuals with an invalid fitness
        invalid_ind = [ind for ind in offspring if not ind.fitness.valid]
        fitnesses = toolbox.map(toolbox.evaluate, invalid_ind)
        for ind, fit in zip(invalid_ind, fitnesses):
            ind.fitness.values = fit

        # Update the hall of fame with the generated individuals
        if halloffame is not None:
            halloffame.update(offspring)

        # Select the next generation population
        population[:] = toolbox.select(population + offspring, mu)
        winner = toolbox.select(population, 1)[0]

        # Update the statistics with the new population
        record = stats.compile(population) if stats is not None else {}
        logbook.record(gen=gen, nevals=len(invalid_ind), **record)
        if verbose:
            print(logbook.stream)
        gen += 1

    return population, logbook
Esempio n. 7
0
def eaMuPlusLambda(population, toolbox, mu, lambda_, cxpb, mutpb, halloffame=None):
    """This is the :math:`(\mu + \lambda)` evolutionary algorithm.

    :param population: A list of individuals.
    :param toolbox: A :class:`~deap.base.Toolbox` that contains the evolution
                    operators.
    :param mu: The number of individuals to select for the next generation.
    :param lambda\_: The number of children to produce at each generation.
    :param cxpb: The probability that an offspring is produced by crossover.
    :param mutpb: The probability that an offspring is produced by mutation.
    :returns: Yields the population and the logbook

    First, the individuals having an invalid fitness are evaluated. Then, the
    evolutionary loop begins by producing *lambda_* offspring from the
    population, the offspring are generated by a crossover, a mutation or a
    reproduction proportionally to the probabilities *cxpb*, *mutpb* and 1 -
    (cxpb + mutpb). The offspring are then evaluated and the next generation
    population is selected from both the offspring **and** the population.
    Briefly, the operators are applied as following ::

        evaluate(population)
        for i in range(ngen):
            offspring = varOr(population, toolbox, lambda_, cxpb, mutpb)
            evaluate(offspring)
            population = select(population + offspring, mu)

    This function expects :meth:`toolbox.mate`, :meth:`toolbox.mutate`,
    :meth:`toolbox.select` and :meth:`toolbox.evaluate` aliases to be
    registered in the toolbox. This algorithm uses the :func:`varOr`
    variation.
    """

    # Evaluate the individuals with an invalid fitness
    invalid_ind = [ind for ind in population if not ind.fitness.valid]
    fitnesses = toolbox.map(toolbox.evaluate, invalid_ind)
    for ind, fit in zip(invalid_ind, fitnesses):
        ind.fitness.values = fit

    yield population, invalid_ind

    # Begin the generational process
    while True:
        # Vary the population
        offspring = varOr(population, toolbox, lambda_, cxpb, mutpb)

        # Evaluate the individuals with an invalid fitness
        invalid_ind = [ind for ind in offspring if not ind.fitness.valid]
        fitnesses = toolbox.map(toolbox.evaluate, invalid_ind)
        for ind, fit in zip(invalid_ind, fitnesses):
            ind.fitness.values = fit

        # Select the next generation population
        population[:] = toolbox.select(population + offspring, mu)

        # Update the statistics with the new population
        yield population, invalid_ind
Esempio n. 8
0
def launch_es(mu=100, lambda_=200, cxpb=0.6, mutpb=0.3, ngen=1000, display=False, verbose=False):

    # Initialisation 
    random.seed()

    population = toolbox.population(n=mu)
    populations.append(population)

    halloffame = tools.HallOfFame(1)
    stats = tools.Statistics(lambda ind: ind.fitness.values)
    stats.register("avg", numpy.mean)
    stats.register("std", numpy.std)
    stats.register("min", numpy.min)
    stats.register("max", numpy.max)
    
    logbook = tools.Logbook()
    logbook.header = ['gen', 'nevals'] + (stats.fields if stats else [])

    # Evaluate the entire population
    invalid_ind = [ind for ind in population if not ind.fitness.valid]
    fitnesses = toolbox.map(toolbox.evaluate, invalid_ind)
    for ind, fit in zip(invalid_ind, fitnesses):
        ind.fitness.values = fit

    if halloffame is not None:
        halloffame.update(population)

    record = stats.compile(population) if stats is not None else {}
    logbook.record(gen=0, nevals=len(invalid_ind), **record)
    if verbose:
        print(logbook.stream)

    # Boucle de l'algorithme évolutionniste
    for gen in range(1, ngen + 1):
        
        ### A completer pour implementer un ES en affichant regulièrement les resultats a l'aide de la fonction plot_results fournie ###
        ### Vous pourrez tester plusieurs des algorithmes implémentés dans DEAP pour générer une population d'"enfants" 
        ### à partir de la population courante et pour sélectionner les géniteurs de la prochaine génération
         
        offspring = algorithms.varOr(population, toolbox, lambda_=100, cxpb=0.5,mutpb=0.1)
        fits = toolbox.map(toolbox.evaluate, offspring)
        for fit, ind in zip(fits, offspring):
            ind.fitness.values = fit
        population = toolbox.select(offspring + population, k=100)
        populations.append(population)
        # Update the hall of fame with the generated individuals
        if halloffame is not None:
            halloffame.update(population)

        # Update the statistics with the new population
        record = stats.compile(population) if stats is not None else {}
        logbook.record(gen=gen, nevals=len(invalid_ind), **record)
        if verbose:
            print(logbook.stream)

    return population, logbook, halloffame,populations
Esempio n. 9
0
def main(dictionary, g1, g2, g3):
    global features
    preprocess_data(dictionary, g1, g2, g3)
    data = pd.read_csv('student-mat-pre.csv', delimiter = ';')
    cols = list(data.columns)
    cols.remove('G1')
    cols.remove('G2')
    cols.remove('G3')

    for col in cols:
        data[col] = (data[col] - data[col].mean()) / data[col].std(ddof=0)

    data.to_csv('temp')
    features = []

    with open('temp') as f:
        for index, line in enumerate(f):
            params = line.strip().split(',')

            if index != 0:
                for i in range(len(params)):
                    params[i] = float(params[i])

            features.append(params[1:-3])

    features = features[1:len(features)]

    tree_c = DecisionTreeClassifier(criterion='entropy')
    gnb_c = GaussianNB()

    creator.create('FitnessMax', base.Fitness, weights=(1.0,))
    creator.create("Individual", list, fitness=creator.FitnessMax)

    toolbox = base.Toolbox()
    toolbox.register('bit', random.random)
    toolbox.register('individual', tools.initRepeat, creator.Individual, toolbox.bit, n=30)
    toolbox.register('population',tools.initRepeat, list, toolbox.individual, n=200)
    toolbox.register('evaluate', fitness_value)
    toolbox.register('mate', tools.cxUniform, indpb=0.1)
    toolbox.register('mutate', tools.mutFlipBit, indpb=0.05)
    toolbox.register('select', tools.selNSGA2)

    population = toolbox.population()
    fits = toolbox.map(toolbox.evaluate, population)

    for fit, ind in zip(fits, population):
        ind.fitness.values = (fit,)

    for gen in range(100):
        offspring = algorithms.varOr(population, toolbox, lambda_ = 10, cxpb=0.5, mutpb=0.1)
        fits = toolbox.map(toolbox.evaluate, offspring)
        for fit, ind in zip(fits, offspring):
            ind.fitness.values = (fit,)
        population = toolbox.select(offspring+population, k=20)

    individual = tools.selBest(population, k=1)
Esempio n. 10
0
def eaMuPlusLambda(population,
                   toolbox,
                   mu,
                   lambda_,
                   cxpb,
                   mutpb,
                   ngen,
                   stats=None,
                   halloffame=None,
                   verbose=__debug__):

    logbook = tools.Logbook()
    logbook.header = ['gen', 'nevals'] + (stats.fields if stats else [])

    # Evaluate the individuals with an invalid fitness
    invalid_ind = [ind for ind in population if not ind.fitness.valid]
    fitnesses = toolbox.map(toolbox.evaluate, invalid_ind)
    for ind, fit in zip(invalid_ind, fitnesses):
        ind.fitness.values = fit

    if halloffame is not None:
        halloffame.update(population)

    record = stats.compile(population) if stats is not None else {}
    logbook.record(gen=0, nevals=len(invalid_ind), **record)
    if verbose:
        print(logbook.stream)

    # Begin the generational process
    for gen in tqdm(range(1, ngen + 1)):
        # Vary the population
        offspring = algorithms.varOr(population, toolbox, lambda_, cxpb, mutpb)

        # Evaluate the individuals with an invalid fitness
        invalid_ind = [ind for ind in offspring if not ind.fitness.valid]
        fitnesses = toolbox.map(toolbox.evaluate, invalid_ind)
        for ind, fit in zip(invalid_ind, fitnesses):
            ind.fitness.values = fit

        # Update the hall of fame with the generated individuals
        if halloffame is not None:
            halloffame.update(offspring)

        # Select the next generation population
        population[:] = toolbox.select(population + offspring, mu)

        # Update the statistics with the new population
        record = stats.compile(population) if stats is not None else {}
        logbook.record(gen=gen, nevals=len(invalid_ind), **record)
        if verbose:
            print(logbook.stream)

    return population, logbook
Esempio n. 11
0
def eaMuCommaLambda1Gen(population, toolbox, mu, lambda_, cxpb, mutpb, gen):
    """This is the :math:`(\mu~,~\lambda)` evolutionary algorithm.

    :param population: A list of individuals.
    :param toolbox: A :class:`~deap.base.Toolbox` that contains the evolution
                    operators.
    :param mu: The number of individuals to select for the next generation.
    :param lambda_: The number of children to produce at each generation.
    :param cxpb: The probability that an offspring is produced by crossover.
    :param mutpb: The probability that an offspring is produced by mutation.
    :param gen: The generation number.
    :returns: The offspring and population after 1 generation.

    First, the individuals having an invalid fitness are evaluated. Then, the
    evolutionary loop begins by producing *lambda_* offspring from the
    population, the offspring are generated by a crossover, a mutation or a
    reproduction proportionally to the probabilities *cxpb*, *mutpb* and 1 -
    (cxpb + mutpb). The offspring are then evaluated and the next generation
    population is selected **only** from the offspring. Briefly, the operators
    are applied as following ::

        evaluate(population)
        for i in range(ngen):
            offspring = varOr(population, toolbox, lambda_, cxpb, mutpb)
            evaluate(offspring)
            population = select(offspring, mu)

    This function expects :meth:`toolbox.mate`, :meth:`toolbox.mutate`,
    :meth:`toolbox.select` and :meth:`toolbox.evaluate` aliases to be
    registered in the toolbox. This algorithm uses the :func:`varOr`
    variation.
    """
    # 1 iteration of eaMuCommaLambda (deap.__version__ == '1.0')
    assert lambda_ >= mu, ('lambda ({}) must be greater or equal to mu '
                           '({}).'.format(lambda_, mu))

    if gen != 0:
        # Vary the population
        offspring = algorithms.varOr(population, toolbox, lambda_, cxpb, mutpb)

        # Select the next generation population
        population[:] = toolbox.select(population + offspring, mu)
    else:
        # Generation 0
        offspring = population

    return offspring, population
def eaMuPlusLambda_redefined(population, toolbox, MU, LAMBDA, CXPB, MUTPB, NGEN):
    for i in range(NGEN):
        # ----determine the offspring and evaluate the fitness,w
        offspring = algorithms.varOr(population, toolbox, LAMBDA, CXPB, MUTPB)
        invalid_ind = [ind for ind in offspring if not ind.fitness.valid]
        fitnesses = map(toolbox.evaluate, invalid_ind)
        for ind, fit in zip(invalid_ind, fitnesses):
            ind.fitness.values = fit
        
        # ---- evaluate fitness values for the population
        invalid_ind = [ind for ind in population if not ind.fitness.valid]
        fitnesses = map(toolbox.evaluate, invalid_ind)
        for ind, fit in zip(invalid_ind, fitnesses):
            ind.fitness.values = fit
        
        population = toolbox.select(offspring + population, MU) 

    return population
Esempio n. 13
0
File: GA.py Progetto: lisabang/iqsar
    def debug_eval(self):
        toolbox.register("evaluate", evalr2, self.y, self.basetable)
        toolbox.register("mate", tools.cxOnePoint) #Uniform, indpb=0.5)
        toolbox.register("mutate", mutRan, indpb=self.mut)
        toolbox.register("select", tools.selBest)
        population=toolbox.population()
        fits=toolbox.map(toolbox.evaluate, population)

        for fit, ind in zip(fits,population):
            ind.fitness.values=fit
        offspring=algorithms.varOr(population, toolbox, lambda_=100, cxpb=.5, mutpb=.05)   
            #print "offspring",offspring
            #fits=toolbox.map(toolbox.evaluate, offspring)
        print offspring
        for ind in offspring:
            ind.fitness.values=toolbox.evaluate(ind)
            print ind
            print ind.fitness.values
Esempio n. 14
0
def eaMuPlusLambda(toolbox, ngen, verbose=__debug__,
                   include_parents_in_next_generation=True):
    population = toolbox.population
    halloffame = toolbox.hof
    gen = -1
    current_seed = -1

    for gen in range(toolbox.initial_generation, ngen):
        record_individuals(toolbox, population)
        extra = []
        if halloffame.items:
            extra = list(map(toolbox.clone, random.sample(population, toolbox.conf.extra_from_hof)))
        offspring = varOr(population + extra, toolbox, toolbox.conf.lambda_, 1 - toolbox.conf.mutpb, toolbox.conf.mutpb)

        for ind in offspring:
            # just a little extra for when we later want to analyze the hof manually
            ind.generation = gen

        if include_parents_in_next_generation:
            for ind in population:
                del ind.fitness.values
            candidates = population + offspring
        else:
            candidates = offspring

        nevals, total_steps, current_seed = evaluate_candidates(candidates, toolbox)

        if halloffame is not None:
            halloffame.update(offspring)

        record = toolbox.stats.compile(candidates) if toolbox.stats is not None else {}
        population[:] = toolbox.select(candidates, toolbox.conf.mu)

        toolbox.logbook.record(gen=gen, nevals=nevals, steps=total_steps, **record)
        if verbose:
            print(toolbox.logbook.stream)
        if toolbox.checkpoint:
            toolbox.checkpoint(data=dict(generation=gen, halloffame=halloffame, population=population,
                                         logbook=toolbox.logbook, last_seed=current_seed, strategy=None,
                                         recorded_individuals=toolbox.recorded_individuals))
    toolbox.final_checkpoint_data = dict(generation=gen, halloffame=halloffame, population=population,
                                         logbook=toolbox.logbook, last_seed=current_seed, strategy=None,
                                         recorded_individuals=toolbox.recorded_individuals)
    return toolbox.logbook
Esempio n. 15
0
def eaMuPlusLambda_redefined(population, toolbox, MU, LAMBDA, CXPB, MUTPB,
                             NGEN):
    for i in range(NGEN):
        # ----determine the offspring and evaluate the fitness,w
        offspring = algorithms.varOr(population, toolbox, LAMBDA, CXPB, MUTPB)
        invalid_ind = [ind for ind in offspring if not ind.fitness.valid]
        fitnesses = map(toolbox.evaluate, invalid_ind)
        for ind, fit in zip(invalid_ind, fitnesses):
            ind.fitness.values = fit

        # ---- evaluate fitness values for the population
        invalid_ind = [ind for ind in population if not ind.fitness.valid]
        fitnesses = map(toolbox.evaluate, invalid_ind)
        for ind, fit in zip(invalid_ind, fitnesses):
            ind.fitness.values = fit

        population = toolbox.select(offspring + population, MU)

    return population
Esempio n. 16
0
    def debug_eval(self):
        toolbox.register("evaluate", evalr2, self.y, self.basetable)
        toolbox.register("mate", tools.cxOnePoint)  # Uniform, indpb=0.5)
        toolbox.register("mutate", mutRan, indpb=self.mut)
        toolbox.register("select", tools.selBest)
        population = toolbox.population()
        fits = toolbox.map(toolbox.evaluate, population)

        for fit, ind in zip(fits, population):
            ind.fitness.values = fit
        offspring = algorithms.varOr(population,
                                     toolbox,
                                     lambda_=100,
                                     cxpb=0.5,
                                     mutpb=0.05)
        for ind in offspring:
            ind.fitness.values = toolbox.evaluate(ind)
            print(ind)
            print(ind.fitness.values)
Esempio n. 17
0
def run_evolution_strategy(X, train_y_bin, Xt, test_y_bin, train_min,
                           train_max, cxpb, mutpb, start_population_size,
                           size_of_offspring, number_of_epochs):
    creator.create("FitnessMin", base.Fitness, weights=(-1.0, ))
    creator.create("Individual", list, fitness=creator.FitnessMin)
    toolbox = base.Toolbox()
    toolbox.register("individual_guess", initIndividual, creator.Individual)
    toolbox.register("population_guess", initPopulation, list,
                     toolbox.individual_guess)
    toolbox.register("mate", tools.cxSimulatedBinary, eta=1)
    toolbox.register("mutate", tools.mutGaussian, mu=0, sigma=0.1, indpb=0.1)
    toolbox.decorate("mate", checkBounds(train_min, train_max))
    toolbox.decorate("mutate", checkBounds(train_min, train_max))
    population = toolbox.population_guess(train_min, train_max,
                                          start_population_size)
    hof = tools.HallOfFame(1)
    avg_error_on_population = []
    hof_errors = []
    test_errors = []
    hofs = []
    for i in range(number_of_epochs):
        indyvidual_errors = []
        offspring = algorithms.varOr(population, toolbox, size_of_offspring,
                                     cxpb, mutpb)
        for indyvidual in offspring:
            indyvidual_errors.append(
                update_loss_of_indyvidual(indyvidual, X, train_y_bin,
                                          train_min, train_max, offspring, hof,
                                          True))
        population[:] = tools.selBest(offspring, start_population_size)
        avg_error_on_population.append(np.mean(indyvidual_errors))
        hof_rmse = update_loss_of_indyvidual(hof[0], X, train_y_bin, train_min,
                                             train_max, offspring, hof, False)
        hof_errors.append(hof_rmse)
        test_error = update_loss_of_indyvidual(hof[0], Xt, test_y_bin,
                                               train_min, train_max, offspring,
                                               hof, False)
        test_errors.append(test_error)
        hofs.append(hof[0])
        print("Epoch : {} avg RMSE for population : {} hof : {}".format(
            i + 1, avg_error_on_population[-1], hof[0]))
    return hofs, hof_errors, test_errors
Esempio n. 18
0
File: GA.py Progetto: lisabang/iqsar
    def evolvepara(self):
        #import multiprocessing
        #pool = multiprocessing.Pool()
        #toolbox.register("map", pool.map)
        toolbox.register("genind", self.mkeind,self.indsize)
        toolbox.register("individual", tools.initIterate, creator.Individual, toolbox.genind)
        toolbox.register("population",tools.initRepeat, list, toolbox.individual, n=self.popsize)

        toolbox.register("evaluate", self.evalr2)
        toolbox.register("mate", tools.cxOnePoint) #Uniform, indpb=0.5)
        toolbox.register("mutate", self.mutaRan)#, indpb=self.mut)
        toolbox.register("select", tools.selBest)
        population=toolbox.population()
        #print population
        fits=toolbox.map(toolbox.evaluate, population)

        for fit, ind in zip(fits,population):
            ind.fitness.values=fit
            #print fit, ind
            #print fit
        #offspring=algorithms.varOr(population, toolbox, lambda_=100, cxpb=.5, mutpb=.05)    
        #print toolbox.map(toolbox.evaluate, offspring)
        
        avgfitnesses=[]
        for gen in range(self.ngen):
            
            offspring=algorithms.varOr(population, toolbox, lambda_=self.popsize, cxpb=self.cx, mutpb=self.mut)   
            #print "offspring",offspring
            #fits=toolbox.map(toolbox.evaluate, offspring)
            for ind in offspring:
                ind.fitness.values=toolbox.evaluate(ind)
            #for fit, ind in zip(fits,population):
            #    ind.fitness.values=fit
            
            population=toolbox.select([k for k,v in itert.groupby(sorted(offspring+population))], k=100)
            popfits = toolbox.map(toolbox.evaluate, population)
            avgfitnesses.append(np.mean(popfits))
        #plot(len(avgfitnesses), list(avgfitnesses))
#        print avgfitnesses
        print toolbox.map(toolbox.evaluate, population)
        return population
Esempio n. 19
0
File: GA.py Progetto: lisabang/iqsar
    def evolverf(self,evalfunc="q2loo"):
        #toolbox.register("map", pool.map)
        toolbox.register("genind", self.mkeindrf,self.indsize)
        toolbox.register("individual", tools.initIterate, creator.Individual, toolbox.genind)
        toolbox.register("population",tools.initRepeat, list, toolbox.individual, n=self.popsize)
        toolbox.register("individual", tools.initIterate, creator.Individual, toolbox.genind)
        toolbox.register("population",tools.initRepeat, list, toolbox.individual, n=self.popsize)
        if evalfunc=="q2loo":
            toolbox.register("evaluate", self.evalq2loo)
        elif evalfunc=="r2":
            toolbox.register("evaluate", self.evalr2)
        elif evalfunc=="r2adj":
            toolbox.register("evaluate", self.evalr2adj)
        else:
            raise ValueError("not a valid evaluation function specified; use evalr2adj, evalr2, or q2loo")
        
        toolbox.register("mate", tools.cxOnePoint) #Uniform, indpb=0.5)
        toolbox.register("mutate", self.mutaRan)#, indpb=self.mut)
        toolbox.register("select", tools.selBest)
        population=toolbox.population()
        #print population
        fits=toolbox.map(toolbox.evaluate, population)

        for fit, ind in zip(fits,population):
            ind.fitness.values=fit
        
        avgfitnesses=[]
        for gen in range(self.ngen):
            
            offspring=algorithms.varOr(population, toolbox, lambda_=self.popsize, cxpb=self.cx, mutpb=self.mut)   
            for ind in offspring:
                ind.fitness.values=toolbox.evaluate(ind)
            
            population=toolbox.select([k for k,v in itert.groupby(sorted(offspring+population))], k=100)
            popfits = toolbox.map(toolbox.evaluate, population)
            avgfitnesses.append(np.mean(popfits))
        return population
Esempio n. 20
0
def sample_from_pop(population, toolbox, lambda_, cxpb, mutpb):
    """Generate a set of individuals from a population.

    Generate a set of individuals from a population. Parameters:
    :param population: the population to start from
    :param toolbox: the DEAP framework toolbox that contains the variation operators and the evaluation function
    :param lambda_: number of individuals to generate
    :param cxpb: cross-over probability (set to 0 to test only mutation)
    :param mutbp: mutation probability

    WARNING: if cxpb>0, the population size needs to be >2 (it thus won't work to sample individuals from a single individual)
    """
    # Vary the population
    offspring = algorithms.varOr(population, toolbox, lambda_, cxpb, mutpb)
    #for of in offspring:
    #    print("Offspring: "+str(of))
    # Evaluate the individuals with an invalid fitness
    fitnesses = toolbox.map(toolbox.evaluate, offspring)
    for ind, fit in zip(offspring, fitnesses):
        ind.fitness.values = fit[0] 
        ind.bd = fit[1]
        ind.evolvability_samples=None # SD: required, otherwise, the memory usage explodes... I do not understand why yet.
        
    return offspring
Esempio n. 21
0
    def eaMuPlusLambdaTol(population,
                          toolbox,
                          mu,
                          lambda_,
                          ngen,
                          cxpb,
                          mutpb,
                          tol,
                          stats=None,
                          halloffame=None,
                          verbose=__debug__):
        global cxpb_orig, mutpb_orig
        """This is the :math:`(\mu + \lambda)` evolutionary algorithm.

        :param population: A list of individuals.
        :param toolbox: A :class:`~deap.base.Toolbox` that contains the evolution
                        operators.
        :param mu: The number of individuals to select for the next generation.
        :param lambda\_: The number of children to produce at each generation.
        :param cxpb: The probability that an offspring is produced by crossover.
        :param mutpb: The probability that an offspring is produced by mutation.
        :param ngen: The number of generation.
        :param stats: A :class:`~deap.tools.Statistics` object that is updated
                      inplace, optional.
        :param halloffame: A :class:`~deap.tools.HallOfFame` object that will
                           contain the best individuals, optional.
        :param verbose: Whether or not to log the statistics.
        :returns: The final population
        :returns: A class:`~deap.tools.Logbook` with the statistics of the
                  evolution.

        The algorithm takes in a population and evolves it in place using the
        :func:`varOr` function. It returns the optimized population and a
        :class:`~deap.tools.Logbook` with the statistics of the evolution. The
        logbook will contain the generation number, the number of evalutions for
        each generation and the statistics if a :class:`~deap.tools.Statistics` is
        given as argument. The *cxpb* and *mutpb* arguments are passed to the
        :func:`varOr` function. The pseudocode goes as follow ::

            evaluate(population)
            for g in range(ngen):
                offspring = varOr(population, toolbox, lambda_, cxpb, mutpb)
                evaluate(offspring)
                population = select(population + offspring, mu)

        First, the individuals having an invalid fitness are evaluated. Second,
        the evolutionary loop begins by producing *lambda_* offspring from the
        population, the offspring are generated by the :func:`varOr` function. The
        offspring are then evaluated and the next generation population is
        selected from both the offspring **and** the population. Finally, when
        *ngen* generations are done, the algorithm returns a tuple with the final
        population and a :class:`~deap.tools.Logbook` of the evolution.

        This function expects :meth:`toolbox.mate`, :meth:`toolbox.mutate`,
        :meth:`toolbox.select` and :meth:`toolbox.evaluate` aliases to be
        registered in the toolbox. This algorithm uses the :func:`varOr`
        variation.
        """
        logbook = tools.Logbook()
        logbook.header = ['gen', 'nevals'] + (stats.fields if stats else [])

        # Evaluate the individuals with an invalid fitness
        invalid_ind = [ind for ind in population if not ind.fitness.valid]
        fitnesses = toolbox.map(toolbox.evaluate, invalid_ind)
        for ind, fit in zip(invalid_ind, fitnesses):
            ind.fitness.values = fit

        if halloffame is not None:
            halloffame.update(population)

        record = stats.compile(population) if stats is not None else {}
        logbook.record(gen=0, nevals=len(invalid_ind), **record)
        if verbose:
            print(logbook.stream)

        min_fit = np.array(logbook.chapters["fitness"].select("min"))
        # Begin the generational process
        flag_change = False
        flag_limit = False
        gen = 1
        while gen < ngen + 1 and not (min_fit[-1] <= tol).all():
            # Vary the population
            offspring = varOr(population, toolbox, lambda_, cxpb, mutpb)

            # Evaluate the individuals with an invalid fitness
            invalid_ind = [ind for ind in offspring if not ind.fitness.valid]
            fitnesses = toolbox.map(toolbox.evaluate, invalid_ind)
            for ind, fit in zip(invalid_ind, fitnesses):
                ind.fitness.values = fit

            # Update the hall of fame with the generated individuals
            if halloffame is not None:
                halloffame.update(offspring)

            # Select the next generation population
            population[:] = toolbox.select(population + offspring, mu)

            # Update the statistics with the new population
            record = stats.compile(population) if stats is not None else {}
            logbook.record(gen=gen, nevals=len(invalid_ind), **record)
            min_fit = np.array(logbook.chapters["fitness"].select("min"))
            min_actual = np.array(
                logbook.chapters["fitness"].select("min"))[-1]
            min_old = np.array(logbook.chapters["fitness"].select("min"))[-2]
            if verbose:
                print(logbook.stream)
            if (abs(min_actual - min_old) <
                    0.01).all() and flag_limit is False:
                cxpb = cxpb - 0.01
                mutpb = mutpb + 0.01
                print("change")
                flag_change = True
                if cxpb < 0.4:
                    cxpb = 0.4
                    mutpb = 0.5
                    print("limits")
                    flag_limit = True

            else:
                cxpb = cxpb_orig
                mutpb = mutpb_orig
                print("back to orig")
                if flag_change is True:
                    cxpb = cxpb_orig + 0.1
                    mutpb = mutpb_orig - 0.15
                    flag_change = False
                    print("orig after change")
                flag_limit = False

            gen += 1

        return population, logbook
def main():
    # reset bookkeeping
    Component.resetCostKeeping()
    Component.resetPfKeeping()
    Component.resetRiskKeeping()

    ## use existing pf data
    #pfkeeping = np.load('pfkeeping.npz')
    #Component.pfkeeping['flexure'] = pfkeeping['flexure']
    #Component.pfkeeping['shear'] = pfkeeping['shear']
    #Component.pfkeeping['deck'] = pfkeeping['deck']
    ## use existing cost data
    #costkeeping = np.load('costkeeping.npz')
    #Component.costkeeping['flexure'] = costkeeping['flexure']
    #Component.costkeeping['shear'] = costkeeping['shear']
    #Component.costkeeping['deck'] = costkeeping['deck']

    manager = Manager()
    Component.pfkeeping = manager.dict(Component.pfkeeping)
    Component.costkeeping = manager.dict(Component.costkeeping)
    Component.riskkeeping = manager.dict(Component.riskkeeping)

    pool = Pool(processes=num_processes)
    toolbox.register("map", pool.map)

    print "MULTIOBJECTIVE OPTIMIZATION: parallel version"
    start_delta_time = time.time()

    # optimization
    random.seed(64)

    logbook = tools.Logbook()
    logbook.header = ["gen", "evals", "nfront", "mean", "tol"]

    pop = toolbox.population(n=NPOP)
    fits = toolbox.map(toolbox.evaluate, pop)
    for fit,ind in zip(fits, pop):
        ind.fitness.values = fit

    nevals = NPOP

    g = 1
    distances = []
    frontfitlast = np.zeros((1,2))
    nevalsum = 0
    evolStop = False
    halloffame = tools.ParetoFront()
    while not evolStop:
        offspring = algorithms.varOr(pop, toolbox, lambda_=NPOP, cxpb=0.9, mutpb=0.1)
        invalid_ind = [ind for ind in offspring if not ind.fitness.valid]
        nevals = len(invalid_ind)
        nevalsum += nevals
        fits = toolbox.map(toolbox.evaluate, invalid_ind)
        for fit,ind in zip(fits, invalid_ind):
            ind.fitness.values = fit
        pop = toolbox.select(offspring+pop, k=NPOP)
        front = toolbox.sort(offspring+pop, k=NPOP, first_front_only=True)[0]
        halloffame.update(front)

        # check if stop evolution
        distance=[]
        frontfit = [ind.fitness.values for ind in halloffame]
        for obj in frontfit:
            vector = np.array(frontfitlast)-np.array(obj)
            distance.append(min(np.linalg.norm(vector, axis=1)))
        distances.append(np.mean(distance))
        longest = 0.
        for point1 in frontfit:
            for point2 in frontfit:
                dist = np.linalg.norm(np.array(point1)-np.array(point2))
                if dist > longest:
                    longest = dist
        tol = longest/NPOP
        tol = np.maximum(tol, TOL)
        evolStop = (len(distances)>NGEN and all(np.array(distances[-NGEN:])<tol)) or g>NMAX
        frontfitlast = frontfit

        # Gather all the fitnesses in one list and print the stats
        record = stats.compile(pop)
        logbook.record(gen=g, evals=nevals,nfront=len(halloffame),
                mean=distances[-1], tol=tol, **stats.compile(pop))
        print(logbook.stream)

        g+=1

    pool.close()
    pool.join()

    delta_time = time.time() - start_delta_time
    print 'DONE: {} s'.format(str(datetime.timedelta(seconds=delta_time)))


    return pop, logbook, halloffame, nevalsum
def gaMuPlusLambda(population,
                   toolbox,
                   mu,
                   lambda_,
                   cxpb,
                   mutpb,
                   ngen,
                   stats=None,
                   halloffame=None,
                   verbose=__debug__):

    logbook = algorithms.tools.Logbook()
    logbook.header = ['gen', 'nevals'] + (stats.fields if stats else [])

    #  Evaluate the fitness before starting
    invalid_ind = [ind for ind in population if not ind.fitness.valid]
    fitnesses = toolbox.map(toolbox.evaluate, invalid_ind)
    for ind, fit in zip(invalid_ind, fitnesses):
        ind.fitness.values = fit

    if halloffame is not None:
        halloffame.update(population)

    record = stats.compile(population) if stats is not None else {}
    logbook.record(gen=0, nevals=len(invalid_ind), **record)
    if verbose:
        print(logbook.stream)

    # Begin the generational process
    for gen in range(1, ngen + 1):

        print("_________________GA GEN: " + str(gen) +
              "______________________")

        # Invalidate fitness of whole pop to train and evaluate
        for ind in population:
            ind.GAN.gen_no = gen
            ind.GAN.offspring = 0
            del ind.fitness.values
        # Train and Evaluate the individuals
        invalid_ind = [ind for ind in population if not ind.fitness.valid]
        fitnesses = toolbox.map(toolbox.evaluate, invalid_ind)
        for ind, fit in zip(invalid_ind, fitnesses):
            ind.fitness.values = fit

        # Vary the population
        offspring = algorithms.varOr(population, toolbox, lambda_, cxpb, mutpb)

        # Evaluate the individuals with an invalid fitness
        invalid_ind = []
        for ind in offspring:
            if not ind.fitness.valid:
                ind.GAN.offspring = 1
                invalid_ind.append(ind)

        fitnesses = toolbox.map(toolbox.evaluate, invalid_ind)
        for ind, fit in zip(invalid_ind, fitnesses):
            ind.fitness.values = fit

        # Update the hall of fame with the generated individuals
        if halloffame is not None:
            halloffame.update(offspring)

        # Select the next generation population
        population[:] = toolbox.select(population + offspring, mu)

        # Update the statistics with the new population
        record = stats.compile(population) if stats is not None else {}
        logbook.record(gen=gen, nevals=len(invalid_ind), **record)
        if verbose:
            print(logbook.stream)

    return population, logbook
Esempio n. 24
0
def myEAMuCommaLambda(population, startgen, toolbox, mu, lambda_, cxpb, mutpb, ngen,
                      stats=None, halloffame=None, logbook=None, verbose=False, id=None):

    assert lambda_ >= mu, "lambda must be greater or equal to mu."

    # Evaluate the individuals with an invalid fitness
    invalid_ind = [ind for ind in population if not ind.fitness.valid]
    fitnesses = toolbox.map(toolbox.evaluate, invalid_ind)
    for ind, fit in zip(invalid_ind, fitnesses):
        ind.fitness.values = fit

    if halloffame is not None:
        halloffame.update(population)

    if logbook is None:
        logbook = tools.Logbook()
        logbook.header = ['gen', 'nevals'] + (stats.fields if stats else [])

    record = stats.compile(population) if stats is not None else {}
    logbook.record(gen=startgen, nevals=len(invalid_ind), **record)
    if verbose:
        print(logbook.stream)

    # Begin the generational process
    total_time = datetime.timedelta(seconds=0) 
    for gen in range(startgen+1, ngen):
        start_time = datetime.datetime.now()
        
        # Vary the population
        offspring = algorithms.varOr(population, toolbox, lambda_, cxpb, mutpb)

        # Evaluate the individuals with an invalid fitness
        invalid_ind = [ind for ind in offspring if not ind.fitness.valid]
        fitnesses = toolbox.map(toolbox.evaluate, invalid_ind)
        for ind, fit in zip(invalid_ind, fitnesses):
            ind.fitness.values = fit

        # Update the hall of fame with the generated individuals
        if halloffame is not None:
            halloffame.update(offspring)

        # Select the next generation population
        population[:] = toolbox.select(offspring, mu)

        # Update the statistics with the new population
        record = stats.compile(population) if stats is not None else {}
        logbook.record(gen=gen, nevals=len(invalid_ind), **record)
        if verbose:
            print(logbook.stream)

        if gen % 1 == 0:
            # Fill the dictionary using the dict(key=value[, ...]) constructor
            cp = dict(population=population, generation=gen, halloffame=halloffame,
                      logbook=logbook, rndstate=random.getstate())
            if id is None:
                cp_name = "checkpoint_es.pkl"
            else:
                cp_name = "checkpoint_es_{}.pkl".format(id)
            pickle.dump(cp, open(cp_name, "wb"))

        gen_time = datetime.datetime.now() - start_time
        total_time = total_time + gen_time
        if total_time > datetime.timedelta(hours=4*24):
            print("Time limit exceeded.")
            break 

            
            
    return population, logbook
Esempio n. 25
0
    def OnEvolve(self,
                 cxpb=0.6,
                 mutpb=0.2,
                 lambda_=n_pop * 2,
                 verbose=__debug__):

        if self.gen == 0:
            start_time = time.time()

            invalid_ind = [
                ind for ind in self.population if not ind.fitness.valid
            ]

            fitnesses = self.toolbox.map(self.toolbox.evaluate, invalid_ind)

            for ind, fit in zip(invalid_ind, fitnesses):
                ind.fitness.values = fit

            if self.halloffame is not None:
                self.halloffame.update(self.population)

            record = self.stats.compile(self.population) if self.stats else {}
            self.logbook.record(gen=0, nevals=len(invalid_ind), **record)
            if verbose:
                elapsed_time = time.time() - start_time
                #print self.logbook.stream + "\t\t%0.2f sec"%(elapsed_time)
                #self.Log('\n'+self.logbook.stream)

            self.context.evo_time = elapsed_time

            self.gen += 1

            self.selected_individuals = self.halloffame[:1]

            # save to file
            #self.Checkpoint()

        else:
            start_time = time.time()

            offspring = algorithms.varOr(self.population, self.toolbox,
                                         lambda_, cxpb, mutpb)

            invalid_ind = [
                ind for ind in offspring
            ]  # if not ind.fitness.valid] # force eval of every indv, as history is a moving widnow to eval on

            fitnesses = self.toolbox.map(self.toolbox.evaluate, invalid_ind)
            for ind, fit in zip(invalid_ind, fitnesses):
                ind.fitness.values = fit

            # Update the hall of fame with the generated individuals
            if self.halloffame is not None:
                self.halloffame.clear(
                )  # force eval of every indv, as history is a moving widnow to eval on
                self.halloffame.update(offspring)

            self.population[:] = self.toolbox.select(
                self.population + offspring, n_pop)

            # Append the current generation statistics to the logbook
            record = self.stats.compile(self.population) if self.stats else {}
            self.logbook.record(gen=self.gen,
                                nevals=len(invalid_ind),
                                **record)
            if verbose:
                elapsed_time = time.time() - start_time
                #print self.logbook.stream + "\t\t%0.2f sec"%(elapsed_time)
                #self.Log('\n'+self.logbook.stream)

            self.context.evo_time = elapsed_time

            self.gen += 1

            self.selected_individuals = self.halloffame[:1]

            # save to file
            #self.Checkpoint()

        # using the selected best item
        #signal = self.evalLive(self.halloffame[0])

        # but with pareto front we have ANY number of non dominated individuals each gen, just use them all as an ensemble model
        signal = stats.mode([self.evalLive(indv)
                             for indv in self.halloffame]).mode[0]

        self.context.Log(str(self.gen) + ' : ' + str(self.halloffame[0]))

        return signal
Esempio n. 26
0
def eaMuPlusLambda(population, toolbox, mu, lambda_, cxpb, mutpb, ngen,
                   stats=None, halloffame=None, verbose=__debug__):
    div=[] #for measuring diversity
    resetPeaks()    
    
    logbook = tools.Logbook()
    logbook2 = tools.Logbook()
    logbook.header = ['gen', 'nevals'] + (stats.fields if stats else [])
    logbook2.header = ['gen', 'nevals'] + (stats.fields if stats else [])    
    
    
    fitnesses = []
    hofPop=toolbox.map(toolbox.evaluateHof,population) #change depending on eval func
    for ind, fit in zip(population, hofPop):
        ind.fitness.values = fit

    if halloffame is not None:
        halloffame.update(population)
        
    record = stats.compile(population) if stats is not None else {}
    div.append(momOfInertia(population))
    logbook2.record(gen=0, nevals=len(population), **record)
    
    
    #Evaluate the individuals with an invalid fitness
    
    #fitnesses = []
    #for i in xrange(len(population)):
    #    fitnesses.append(toolbox.evaluate((population)[i],population))                                                      
    #for ind, fit in zip(population, fitnesses):
    #    ind.fitness.values = fit

    population=toolbox.evaluate(population)    
    
    record = stats.compile(population) if stats is not None else {}
    logbook.record(gen=0, nevals=len(population), **record)
    if verbose:
        print logbook.stream
        

    bog=[]    
    offline=[]
    offlinegen=[]
    accuracy=[]
    leaps=0
    #stability=[0]
    #needed for accuracy
    maxt=100 #highest peak
    mint=0
    # Begin the generational process
    for gen in range(1, ngen+1):
        
        #move the peaks
        if gen == 150 or gen ==300:
            print("Best individual is: %s\nwith fitness: %s" % (halloffame[0], halloffame[0].fitness))
            #print population
            halloffame.clear()
            #bog=[]
            global peaks
            peaks[0]=bitFlip(peaks[0],0.1)
            peaks[2]=bitFlip(peaks[2],0.1)
            #if gen==150:
            #    peaks[1]=80
            #    peaks[3]=100
            #if gen==300:
            #    peaks[1]=100
            #    peaks[3]=80
            for x in xrange(len(population)):
                del population[x].fitness.values
            
            invalid_ind = [ind for ind in population if not ind.fitness.valid]
            fitnesses = toolbox.map(toolbox.evaluateHof, invalid_ind)
            for ind, fit in zip(invalid_ind, fitnesses):
                ind.fitness.values = fit
                
        # Vary the population
        offspring = algorithms.varOr(population, toolbox, lambda_, cxpb, mutpb)
        
        # Evaluate the individuals with an invalid fitness
        #invalid_ind = [ind for ind in offspring if not ind.fitness.valid]
        #fitnesses = toolbox.map(toolbox.evaluate, invalid_ind)
        #for ind, fit in zip(invalid_ind, fitnesses):
        #    ind.fitness.values = fit
        
        # Update the fitness of all individuals for clearing
        clearingFit=toolbox.map(toolbox.evaluateHof,population + offspring)
        for ind, fit in zip(population+offspring, clearingFit):
            ind.fitness.values = fit
                
        
        #all individuals given fitness for hof this is then used to clear   
        #fitnesses = []
        #for i in xrange(len(population+offspring)):
        #    fitnesses.append(toolbox.evaluate((population+offspring)[i],population+offspring))                                                      
        #for ind, fit in zip(population+offspring, fitnesses):
        #    ind.fitness.values = fit
            
        tempPop=population+offspring
        tempPop = toolbox.evaluate(tempPop)

        # Select the next generation population
        population[:] = toolbox.select(tempPop, mu)#change temppop here if it doesnt work
    
        # Update the statistics with the new population
        record = stats.compile(population) if stats is not None else {}
        
        logbook.record(gen=gen, nevals=len(population + offspring), **record)
        if verbose:
            print logbook.stream
            
        # Update the hall of fame with the generated individuals fitness not dependant on sharing
        hofPop = deepcopy(population)
        fitnesses=toolbox.map(toolbox.evaluateHof,hofPop) #change depending on eval func
        for ind, fit in zip(hofPop, fitnesses):
            ind.fitness.values = fit
        
        if halloffame is not None:
            try:
                a=halloffame[0].fitness.values
            except IndexError:
                a=0
            halloffame.update(hofPop)
            b=halloffame[0].fitness.values
            if b>a:
                leaps+=1
        #record stats and offline and diversity and accuracy      
        record = stats.compile(hofPop) if stats is not None else {}
        div.append(momOfInertia(hofPop))
        logbook2.record(gen=gen, nevals=len(hofPop), **record)
        offline.append(halloffame[0].fitness.values[0])
        offlinegen.append(gen)
        accuracy.append((record["max"]-mint)/(maxt-mint))
        
        
        #show graphs at final generation
        if gen==ngen:
            #open files for data
            off=open("offline.txt","a")
            bog=open("bog.txt","a")
            mini=open("min.txt","a")
            aver=open("aver.txt","a")
            maxi=open("max.txt","a")
            diver=open("div.txt","a")
            
            print leaps
            print "offline performance: ",sum(offline)/len(offline)
            print "average bog: ", sum(logbook.select("max"))/len(logbook.select("max"))
            #print offline
            
            off.write(str(sum(offline)/len(offline)))
            off.write(",")
            bog.write(str(sum(logbook.select("max"))/len(logbook.select("max"))))
            bog.write(",")
            diver.write(str(div))
            diver.write(",")
            mini.write(str(logbook2.select("min")))
            mini.write(",")        
            aver.write(str(logbook2.select("avg")))
            aver.write(",")
            maxi.write(str(logbook2.select("max")))  
            maxi.write(",")
            #accuracy
            plt.figure(2)
            plt.title("accuracy")
            plt.plot(offlinegen,accuracy)            
            plt.axis([0,ngen,0,1])
            plt.show()
            #diversity
            plt.figure(3)
            plt.title("Diversity")
            plt.plot(xrange(len(div)),div)
            plt.axis([0,len(div),0,1250])
            plt.show()
            #min av max
            plt.figure(4)
            plt.title("min, avg, max")
            plt.plot(xrange(ngen+1),logbook2.select("min"),label="min")
            plt.plot(xrange(ngen+1),logbook2.select("avg"),label="avg")
            plt.plot(xrange(ngen+1),logbook2.select("max"),label="max")
            plt.legend(loc=8)
            plt.axis([0,ngen,0,maxt])
            plt.show()
            #stability
            plt.figure(5)
            plt.title("Stability")
            stability=[]
            for i in xrange(len(accuracy)):
                stability.append(max(0,accuracy[i]-accuracy[i-1]))
            plt.plot(offlinegen,stability)            
            plt.axis([0,ngen,0,1])
            plt.show()
            
            off.close()
            bog.close()
            mini.close()
            aver.close()
            maxi.close()
            diver.close()
        
    return population, logbook
Esempio n. 27
0
    def evolve(self, evalfunc="q2loo"):
        """
        1st element returned is the original population, 
        2nd is is the evaluation of the firness function on the originalpopualtion, 
        3rd is the final population, 
        4th is the evalution of the fitness function on the final population.
 
        """
        toolbox.register("genind", self.mkeindseed, self.indsize)
        toolbox.register("individual", tools.initIterate, creator.Individual,
                         toolbox.genind)
        toolbox.register("population",
                         tools.initRepeat,
                         list,
                         toolbox.individual,
                         n=self.popsize)

        if evalfunc == "q2loo":
            toolbox.register("evaluate", self.evalq2loo)
        elif evalfunc == "q2lmo":
            toolbox.register("evaluate", self.evalq2lmo)
        elif evalfunc == "r2":
            toolbox.register("evaluate", self.evalr2)
        elif evalfunc == "r2adj":
            toolbox.register("evaluate", self.evalr2adj)
        else:
            raise ValueError(
                "not a valid evaluation function specified; use evalr2adj, evalr2, or q2loo"
            )

        toolbox.register("mate", tools.cxOnePoint)  #Uniform, indpb=0.5)
        toolbox.register("mutate", self.mutaRan)  #, indpb=self.mut)
        toolbox.register("select", tools.selBest)
        #progress bar start!
        #print 'Starting... # GEN FINISHED:',

        origpop = toolbox.population()
        #self.mkeindseed.count=0
        population = cp.deepcopy(origpop)
        fits = toolbox.map(toolbox.evaluate, population)
        for fit, ind in zip(fits, population):
            ind.fitness.values = fit

        avgfitnesses = []
        popfits = 0
        #prb=ProgressBar(self.ngen)
        for gen in range(self.ngen):
            try:
                offspring = algorithms.varOr(population,
                                             toolbox,
                                             lambda_=self.popsize,
                                             cxpb=self.cx,
                                             mutpb=self.mut)
                for ind in offspring:
                    ind.fitness.values = toolbox.evaluate(ind)
                population = toolbox.select([
                    k for k, v in itert.groupby(sorted(offspring + population))
                ],
                                            k=100)
                popfits = toolbox.map(toolbox.evaluate, population)
                #prb.animate(gen)
                #prb.score=np.mean(popfits)
                #ProgressBar.score=property(lambda self: self.score+np.mean(popfits))
                #prb.update_time(1, prb.score)
            except (KeyboardInterrupt, SystemExit):
                result = [
                    origpop,
                    toolbox.map(toolbox.evaluate, origpop), population,
                    toolbox.map(toolbox.evaluate, population)
                ]
                return result  #self.pretty_print(returnobj)
        result = [
            origpop,
            toolbox.map(toolbox.evaluate, origpop), population,
            toolbox.map(toolbox.evaluate, population)
        ]
        return self.pretty_print(result)
Esempio n. 28
0
def novelty_ea(evaluate, params, pool=None):
    """Novelty Search algorithm
 
    Novelty Search algorithm. Parameters:
    :param evaluate: the evaluation function
    :param params: the dict of run parameters
       * params["pop_size"]: the number of parent individuals to keep from one generation to another
       * params["lambda"]: the number of offspring to generate, given as a multiplying coefficent on params["pop_size"] (the number of generated individuals is: params["lambda"]*params["pop_size"]
       * params["nb_gen"]: the number of generations to compute
       * params["stats"]: the statistics to use (from DEAP framework))
       * params["stats_offspring"]: the statistics to use (from DEAP framework))
       * params["variant"]: the different supported variants ("NS", "Fit", "NS+Fit", "NS+BDDistP", "NS+Fit+BDDistP"), add "," at the end of the variant to select in offspring only (as the ES "," variant). By default, selects within the parents and offspring. "NS" uses the novelty criterion, "Fit" the fitness criterion and "BDDistP' the distance to the parent in the behavior space. If a single criterion is used, an elitist selection scheme is used. If more than one criterion is used, NSGA-II is used (see build_toolbox_ns function) 
       * params["cxpb"]: the crossover rate
       * params["mutpb"]: the mutation rate
    :param dump_period_bd: the period for dumping behavior descriptors
    :param dump_period_pop: the period for dumping the current population
    :param evolvability_period: period of the evolvability computation
    :param evolvability_nb_samples: the number of samples to generate from each individual in the population to estimate their evolvability (WARNING: it will significantly slow down a run and it is used only for statistical reasons
    """
    print("Novelty search algorithm")

    alphas = params[
        "alphas"]  # parameter to compute the alpha shape, to estimate the distance to explored area

    variant = params["variant"]
    if ("+" in variant):
        emo = True
    else:
        emo = False

    nb_eval = 0

    lambda_ = int(params["lambda"] * params["pop_size"])

    toolbox = build_toolbox_ns(evaluate, params, pool)

    population = toolbox.population(n=params["pop_size"])

    logbook = tools.Logbook()
    logbook.header = ['gen', 'nevals']

    if (params["stats"] is not None):
        logbook.header += params["stats"].fields
    if (params["stats_offspring"] is not None):
        logbook.header += params["stats_offspring"].fields

    # Evaluate the individuals with an invalid fitness
    invalid_ind = [ind for ind in population if not ind.fitness.valid]
    nb_eval += len(invalid_ind)
    fitnesses = toolbox.map(toolbox.evaluate, invalid_ind)
    # fit is a list of fitness (that is also a list) and behavior descriptor

    for ind, fit in zip(invalid_ind, fitnesses):
        ind.fit = fit[
            0]  # fit is an attribute just used to store the fitness value
        ind.parent_bd = None
        ind.bd = listify(fit[1])
        ind.id = generate_uuid()
        ind.parent_id = None

    for ind in population:
        ind.am_parent = 0

    archive = updateNovelty(population, population, None, params)

    alpha_shape = alphashape.alphashape(archive.all_bd, alphas)
    isortednov = sorted(range(len(population)),
                        key=lambda k: population[k].novelty,
                        reverse=True)

    varian = params["variant"].replace(",", "")

    for i, ind in enumerate(population):
        ind.dist_to_explored_area = dist_to_shapes(ind.bd, alpha_shape)
        ind.rank_novelty = isortednov.index(i)
        ind.dist_to_parent = 0
        if (emo):
            if (varian == "NS+Fit"):
                ind.fitness.values = (ind.novelty, ind.fit[0])
            elif (varian == "NS+BDDistP"):
                ind.fitness.values = (ind.novelty, 0)
            elif (varian == "NS+Fit+BDDistP"):
                ind.fitness.values = (ind.novelty, ind.fit, 0)
            else:
                print("WARNING: unknown variant: " + variant)
                ind.fitness.values = ind.fit
        else:
            ind.fitness.values = ind.fit
        # if it is not a multi-objective experiment, the select tool from DEAP
        # has been configured above to take the right attribute into account
        # and the fitness.values is thus ignored
    gen = 0

    # Do we look at the evolvability of individuals (WARNING: it will make runs much longer !)
    generate_evolvability_samples(params, population, gen, toolbox)

    record = params["stats"].compile(
        population) if params["stats"] is not None else {}
    record_offspring = params["stats_offspring"].compile(
        population) if params["stats_offspring"] is not None else {}
    logbook.record(gen=0,
                   nevals=len(invalid_ind),
                   **record,
                   **record_offspring)
    if (verbosity(params)):
        print(logbook.stream)

    #generate_dumps(params, population, None, gen, pop1label="population", archive=None, logbook=None)

    for ind in population:
        ind.evolvability_samples = None  # To avoid memory to inflate too much..

    # Begin the generational process
    for gen in range(1, params["nb_gen"] + 1):

        if (gen == params["restart"]):
            print("Restart: we reinitialize the population")
            offspring = toolbox.population(n=lambda_)
            for ind in offspring:
                ind.bd = None
                ind.id = generate_uuid()
                ind.parent_id = None
            population = []
        else:
            # Vary the population
            offspring = algorithms.varOr(population, toolbox, lambda_,
                                         params["cxpb"], params["mutpb"])

        # Evaluate the individuals with an invalid fitness
        invalid_ind = [ind for ind in offspring if not ind.fitness.valid]
        fitnesses = toolbox.map(toolbox.evaluate, invalid_ind)
        nb_eval += len(invalid_ind)
        for ind, fit in zip(invalid_ind, fitnesses):
            ind.fit = fit[0]
            ind.fitness.values = fit[0]
            ind.parent_bd = ind.bd
            ind.parent_id = ind.id
            ind.id = generate_uuid()
            ind.bd = listify(fit[1])

        for ind in population:
            ind.am_parent = 1
        for ind in offspring:
            ind.am_parent = 0

        pq = population + offspring

        if (params["stop_archive_update"] == gen):
            params["add_strategy"] = "none"

        if (params["pop_for_novelty_estimation"] == 0):
            pop_for_novelty_estimation = []
        elif (params["freeze_pop"] == -1) or (gen <= params["freeze_pop"]):
            pop_for_novelty_estimation = list(pq)

        archive = updateNovelty(pq, offspring, archive, params,
                                pop_for_novelty_estimation)

        alpha_shape = alphashape.alphashape(archive.all_bd, alphas)
        isortednov = sorted(range(len(pq)),
                            key=lambda k: pq[k].novelty,
                            reverse=True)

        for i, ind in enumerate(pq):
            ind.dist_to_explored_area = dist_to_shapes(ind.bd, alpha_shape)
            ind.rank_novelty = isortednov.index(i)
            #print("Indiv #%d: novelty=%f rank=%d"%(i, ind.novelty, ind.rank_novelty))
            if (ind.parent_bd is None):
                ind.dist_to_parent = 0
            else:
                ind.dist_to_parent = np.linalg.norm(
                    np.array(ind.bd) - np.array(ind.parent_bd))
            if (emo):
                if (varian == "NS+Fit"):
                    ind.fitness.values = (ind.novelty, ind.fit[0])
                elif (varian == "NS+BDDistP"):
                    if (ind.parent_bd is None):
                        bddistp = 0
                    else:
                        bddistp = np.linalg.norm(
                            np.array(ind.bd) - np.array(ind.parent_bd))
                    ind.fitness.values = (ind.novelty, bddistp)
                elif (varian == "NS+Fit+BDDistP"):
                    if (ind.parent_bd is None):
                        bddistp = 0
                    else:
                        bddistp = np.linalg.norm(
                            np.array(ind.bd) - np.array(ind.parent_bd))
                    ind.fitness.values = (ind.novelty, ind.fit, bddistp)
                else:
                    print("WARNING: unknown variant: " + variant)
                    ind.fitness.values = ind.fit

            else:
                ind.fitness.values = ind.fit

        if ((emo) and (offspring[0].fitness.values == offspring[0].fit)):
            print("WARNING: EMO and the fitness is just the fitness !")

        if (verbosity(params)):
            print("Gen %d" % (gen))
        else:
            if (gen % 100 == 0):
                print(" %d " % (gen), end='', flush=True)
            elif (gen % 10 == 0):
                print("+", end='', flush=True)
            else:
                print(".", end='', flush=True)

        # Select the next generation population
        if ("," in variant):
            population[:] = toolbox.select(offspring, params["pop_size"])
        else:
            population[:] = toolbox.select(pq, params["pop_size"])

        if (("eval_budget" in params.keys()) and (params["eval_budget"] != -1)
                and (nb_eval >= params["eval_budget"])):
            params["nb_gen"] = gen
            terminates = True
        else:
            terminates = False

        dump_data(population,
                  gen,
                  params,
                  prefix="population",
                  attrs=[
                      "all", "dist_to_explored_area", "dist_to_parent",
                      "rank_novelty"
                  ],
                  force=terminates)
        dump_data(population,
                  gen,
                  params,
                  prefix="bd",
                  complementary_name="population",
                  attrs=["bd"],
                  force=terminates)
        dump_data(offspring,
                  gen,
                  params,
                  prefix="bd",
                  complementary_name="offspring",
                  attrs=["bd"],
                  force=terminates)
        dump_data(archive.get_content_as_list(),
                  gen,
                  params,
                  prefix="archive",
                  attrs=["all"],
                  force=terminates)

        generate_evolvability_samples(params, population, gen, toolbox)

        # Update the statistics with the new population
        record = params["stats"].compile(
            population) if params["stats"] is not None else {}
        record_offspring = params["stats_offspring"].compile(
            offspring) if params["stats_offspring"] is not None else {}
        logbook.record(gen=gen,
                       nevals=len(invalid_ind),
                       **record,
                       **record_offspring)
        if (verbosity(params)):
            print(logbook.stream)

        for ind in population:
            ind.evolvability_samples = None

        if (terminates):
            break

    return population, archive, logbook, nb_eval
def eaMuCommaLambda(population,
                    toolbox,
                    mu,
                    lambda_,
                    cxpb,
                    mutpb,
                    ngen,
                    stats=None,
                    halloffame=None,
                    verbose=__debug__):

    assert lambda_ >= mu, "lambda must be greater or equal to mu."

    life_mean = 0

    logbook = tools.Logbook()
    logbook.header = ['gen', 'nevals', 'life_avg'
                      ] + (stats.fields if stats else [])

    # Evaluate the individuals with an invalid fitness
    invalid_ind = [ind for ind in population if not ind.fitness.valid]
    eval = list(toolbox.map(toolbox.evaluate, invalid_ind))

    fitnesses = [e[0] for e in eval]
    life_list = [e[1] for e in eval]
    life_mean = np.mean(life_list)

    for ind, fit in zip(invalid_ind, fitnesses):
        ind.fitness.values = fit

    if halloffame is not None:
        halloffame.update(population)

    record = stats.compile(population) if stats is not None else {}
    logbook.record(gen=0,
                   nevals=len(invalid_ind),
                   life_avg=life_mean,
                   **record)
    if verbose:
        print(logbook.stream)

    # Begin the generational process
    for gen in range(1, ngen + 1):
        # Vary the population
        offspring = algorithms.varOr(population, toolbox, lambda_, cxpb, mutpb)

        # Evaluate the individuals with an invalid fitness
        invalid_ind = [ind for ind in offspring if not ind.fitness.valid]
        eval = list(toolbox.map(toolbox.evaluate, invalid_ind))
        fitnesses = [e[0] for e in eval]
        life_list = [e[1] for e in eval]
        life_mean = np.mean(life_list)

        for ind, fit in zip(invalid_ind, fitnesses):
            ind.fitness.values = fit

        # Update the hall of fame with the generated individuals
        if halloffame is not None:
            halloffame.update(offspring)

        # Select the next generation population
        population[:] = toolbox.select(offspring, mu)

        # Update the statistics with the new population
        record = stats.compile(population) if stats is not None else {}
        logbook.record(gen=gen,
                       nevals=len(invalid_ind),
                       life_avg=life_mean,
                       **record)
        if verbose:
            print(logbook.stream)
    return population, logbook
Esempio n. 30
0
File: GA.py Progetto: lisabang/iqsar
    def evolve(self,evalfunc="q2loo"):
     
        toolbox.register("genind", self.mkeindseed, self.indsize)
        toolbox.register("individual", tools.initIterate, creator.Individual, toolbox.genind)
        toolbox.register("population",tools.initRepeat, list, toolbox.individual, n=self.popsize)
        
        if evalfunc=="q2loo":
            toolbox.register("evaluate", self.evalq2loo)
        elif evalfunc=="q2lmo":
            toolbox.register("evaluate", self.evalq2lmo)
        elif evalfunc=="r2":
            toolbox.register("evaluate", self.evalr2)
        elif evalfunc=="r2adj":
            toolbox.register("evaluate", self.evalr2adj)
        else:
            raise ValueError("not a valid evaluation function specified; use evalr2adj, evalr2, or q2loo")
        
        toolbox.register("mate", tools.cxOnePoint) #Uniform, indpb=0.5)
        toolbox.register("mutate", self.mutaRan)#, indpb=self.mut)
        toolbox.register("select", tools.selBest)
#progress bar start!
        #print 'Starting... # GEN FINISHED:',

        origpop=toolbox.population()
        #self.mkeindseed.count=0
        population=cp.deepcopy(origpop)
        fits=toolbox.map(toolbox.evaluate, population)
        for fit, ind in zip(fits,population):
            ind.fitness.values=fit
        
        avgfitnesses=[]
        popfits=0
        prb=ProgressBar(self.ngen)#, popfits)
        #ProgressBar.score=0
        #prb.animate()#popfits)
        #prb.animate(popfits)
        #steps=self.ngen/10
        for gen in range(self.ngen):
            try:
                offspring=algorithms.varOr(population, toolbox, lambda_=self.popsize, cxpb=self.cx, mutpb=self.mut)   
                for ind in offspring:
                    ind.fitness.values=toolbox.evaluate(ind)
                population=toolbox.select([k for k,v in itert.groupby(sorted(offspring+population))], k=100)
                popfits = toolbox.map(toolbox.evaluate, population)
                prb.animate(gen)
                #prb.score=np.mean(popfits)
                #ProgressBar.score=property(lambda self: self.score+np.mean(popfits))
                #prb.update_time(1, prb.score)
            except (KeyboardInterrupt, SystemExit):
                return [origpop, toolbox.map(toolbox.evaluate, origpop), population, toolbox.map(toolbox.evaluate, population)]
            except:
                return [origpop, toolbox.map(toolbox.evaluate, origpop), population, toolbox.map(toolbox.evaluate, population)]
            #print prb.score
            #new progressbar try
            #if gen%steps ==0:
                
            #    print '\b',gen, np.round(np.mean(popfits), decimals=3),
            #    sys.stdout.flush() 
        
        #print '\b'*1,
        #print '\b  Done!',
        #sys.stdout.flush() 
        #print "Done!"

            

        return [origpop, toolbox.map(toolbox.evaluate, origpop), population, toolbox.map(toolbox.evaluate, population)]
        print "Done!"
Esempio n. 31
0
def eaMuPlusLambda(population, toolbox, mu, lambda_, cxpb, mutpb, ngen,
                   stats=None, halloffame=None, verbose=__debug__):
    resetPeaks()
    div=[]    
    logbook = tools.Logbook()
    logbook2 = tools.Logbook()
    logbook.header = ['gen', 'nevals'] + (stats.fields if stats else [])
    logbook2.header = ['gen', 'nevals'] + (stats.fields if stats else [])

    # Evaluate the individuals with an invalid fitness
    #invalid_ind = [ind for ind in population if not ind.fitness.valid]
    hofPop=toolbox.map(fitnessCustom,population) #change depending on eval func
    for ind, fit in zip(population, hofPop):
        ind.fitness.values = fit

    if halloffame is not None:
        halloffame.update(population)
        
    record = stats.compile(population) if stats is not None else {}
    div.append(momOfInertia(population))
    logbook2.record(gen=0, nevals=len(population), **record)
        
    fitnesses = []
    for i in xrange(len(population)):
        fitnesses.append(toolbox.evaluate((population)[i],population))
    for ind, fit in zip(population, fitnesses):
        ind.fitness.values = fit

    record = stats.compile(population) if stats is not None else {}
    div.append(momOfInertia(population))
    #div.append(averageHammingDistance(population))
    logbook.record(gen=0, nevals=len(population), **record)
    if verbose:
        print logbook.stream
    
    offline=[]
    offlinegen=[]
    accuracy=[]
    leaps=0
    #stability=[0]
    #needed for accuracy
    maxt=100 #highest peak
    mint=0
    # Begin the generational process
    for gen in range(1, ngen+1):
        #move the peaks
        #poppy = sorted(population, key=attrgetter("fitness"),reverse=True)
        #print poppy[0], poppy[0].fitness.values
        if gen==150 or gen == 300:
            print("Best individual is: %s\nwith fitness: %s" % (halloffame[0], halloffame[0].fitness))
            halloffame.clear()
            #print population
            #clear every time peaks move as new fitness period
            global peaks
            #peaks[0]=bitFlip(peaks[0],0.1)
            #peaks[2]=bitFlip(peaks[2],0.1)
            print population
            if gen==150:
                peaks[1]=80
                peaks[3]=100
            if gen==300:
                peaks[1]=100
                peaks[3]=80
            #peaks[0] = bitFlip(peaks[0],0.2)
            #print peaks[0]
            #print("Best individual is: %s\nwith fitness: %s" % (halloffame[0], halloffame[0].fitness))   
            
            for x in xrange(len(population)):
                del population[x].fitness.values
            
            fitnesses = []#toolbox.map(toolbox.evaluate, population+offspring)
            for i in xrange(len(population)):
                fitnesses.append(toolbox.evaluate((population)[i],population))
            for ind, fit in zip(population, fitnesses):
                ind.fitness.values = fit
            
        
        # Vary the population
        offspring = algorithms.varOr(population, toolbox, lambda_, cxpb, mutpb)
                       
               
        fitnesses = []#toolbox.map(toolbox.evaluate, population+offspring)
        for i in xrange(len(population+offspring)):
            fitnesses.append(toolbox.evaluate((population+offspring)[i],population+offspring))
        for ind, fit in zip(population+offspring, fitnesses):
            ind.fitness.values = fit
    
        population[:] = toolbox.select(population + offspring, mu)

        # Update the statistics with the new population
        record = stats.compile(population) if stats is not None else {}

        logbook.record(gen=gen, nevals=len(population), **record)
        if verbose:
            print logbook.stream
        
        
        # Update the hall of fame with the generated individuals fitness not dependant on sharing
        hofPop = deepcopy(population)
        fitnesses=toolbox.map(fitnessCustom,hofPop) #CHANGE EVAL FUNCTION HERE
        for ind, fit in zip(hofPop, fitnesses):
            ind.fitness.values = fit
        
        if halloffame is not None:
            try:
                a=halloffame[0].fitness.values
            except IndexError:
                a=0
            halloffame.update(hofPop)
            b=halloffame[0].fitness.values
            if b>a:
                leaps+=1
        #record stats and offline and diversity and accuracy      
        record = stats.compile(hofPop) if stats is not None else {}
        div.append(momOfInertia(hofPop))
        logbook2.record(gen=gen, nevals=len(hofPop), **record)
        print logbook2.stream
        offline.append(halloffame[0].fitness.values[0])
        offlinegen.append(gen)
        accuracy.append((record["max"]-mint)/(maxt-mint))
        
        #show graphs at final generation
        if gen==ngen:
            off=open("offline.txt","a")
            bog=open("bog.txt","a")
            mini=open("min.txt","a")
            aver=open("aver.txt","a")
            maxi=open("max.txt","a")
            diver=open("div.txt","a")
            
            print leaps
            print "offline performance: ",sum(offline)/len(offline)
            print "average bog: ", sum(logbook2.select("max"))/len(logbook2.select("max"))
            #print offline
            
            off.write(str(sum(offline)/len(offline)))
            off.write(",")
            bog.write(str(sum(logbook2.select("max"))/len(logbook2.select("max"))))
            bog.write(",")
            diver.write(str(div))
            diver.write(",")
            mini.write(str(logbook2.select("min")))
            mini.write(",")        
            aver.write(str(logbook2.select("avg")))
            aver.write(",")
            maxi.write(str(logbook2.select("max")))  
            maxi.write(",")
            
            #accuracy
            plt.figure(2)
            plt.title("accuracy")
            plt.plot(offlinegen,accuracy)            
            plt.axis([0,ngen,0,1])
            plt.show()
            #diversity
            plt.figure(3)
            plt.title("Diversity")
            plt.plot(xrange(len(div)),div)
            plt.axis([0,len(div),0,1250])
            plt.show()
            #min av max
            plt.figure(4)
            plt.title("min, avg, max")
            plt.plot(xrange(ngen+1),logbook2.select("min"),label="min")
            plt.plot(xrange(ngen+1),logbook2.select("avg"),label="avg")
            plt.plot(xrange(ngen+1),logbook2.select("max"),label="max")
            plt.legend(loc=8)
            plt.axis([0,ngen,0,maxt])
            plt.show()
            #stability
            plt.figure(5)
            plt.title("Stability")
            stability=[]
            for i in xrange(len(accuracy)):
                stability.append(max(0,accuracy[i]-accuracy[i-1]))
            plt.plot(offlinegen,stability)            
            plt.axis([0,ngen,0,1])
            plt.show()
            
            off.close()
            bog.close()
            mini.close()
            aver.close()
            maxi.close()
            diver.close()

            
    return population, logbook   
Esempio n. 32
0
def eaMuPlusLambda(population, toolbox, mu, lambda_, cxpb, mutpb, ngen,
                   stats=None, halloffame=None, verbose=__debug__):
    resetPeaks()
    div=[]
    logbook = tools.Logbook()
    logbook.header = ['gen', 'nevals'] + (stats.fields if stats else [])

    # Evaluate the individuals with an invalid fitness
    invalid_ind = [ind for ind in population if not ind.fitness.valid]
    fitnesses = toolbox.map(toolbox.evaluate, invalid_ind)
    for ind, fit in zip(invalid_ind, fitnesses):
        ind.fitness.values = fit

    if halloffame is not None:
        halloffame.update(population)

    record = stats.compile(population) if stats is not None else {}
    div.append(momOfInertia(population))
    logbook.record(gen=0, nevals=len(invalid_ind), **record)
    if verbose:
        print logbook.stream

    offline=[]
    offlinegen=[]
    accuracy=[]
    #leaps=0
    #needed for accuracy
    maxt=100 #highest peak
    mint=0
    # Begin the generational process
    for gen in range(1, ngen+1):
        #print peaks
        if gen==150 or gen ==300:
            halloffame.clear()
            global peaks 
            #peaks[0] = bitFlip(peaks[0],0.1)
            #peaks[2] = bitFlip(peaks[2],0.1)
            print population
            if gen==150:
                peaks[1]=80
                peaks[3]=100
            if gen==300:
                peaks[1]=100
                peaks[3]=80
            #print peaks
           
            for x in xrange(len(population)):
                 del population[x].fitness.values
            
            fitnesses = toolbox.map(toolbox.evaluate, population)
            for ind, fit in zip(population, fitnesses):
                ind.fitness.values = fit
            
            
        # Vary the population
        offspring = algorithms.varOr(population, toolbox, lambda_, cxpb, mutpb)
        
        # Evaluate the individuals with an invalid fitness
        invalid_ind = [ind for ind in offspring if not ind.fitness.valid]
        fitnesses = toolbox.map(toolbox.evaluate, invalid_ind)
        for ind, fit in zip(invalid_ind, fitnesses):
            ind.fitness.values = fit
        
        # Update the hall of fame with the generated individuals
        if halloffame is not None:
            halloffame.update(offspring)

        # Select the next generation population
        population[:] = toolbox.select(population + offspring, mu)

        # Update the statistics with the new population
        record = stats.compile(population) if stats is not None else {}
        
        div.append(momOfInertia(population))
        offline.append(halloffame[0].fitness.values[0])
        offlinegen.append(gen)
        accuracy.append((record["max"]-mint)/(maxt-mint))
        
        logbook.record(gen=gen, nevals=len(invalid_ind), **record)
        if verbose:
            print logbook.stream

        #show graphs at final generation
        if gen==ngen:
            #print leaps
            #off=open("offline.txt","a")
            #bog=open("bog.txt","a")
            #mini=open("min.txt","a")
            #aver=open("aver.txt","a")
            #maxi=open("max.txt","a")
            #diver=open("div.txt","a")
            print "offline performance: ",sum(offline)/len(offline)
            #off.write(str(sum(offline)/len(offline)))
            #off.write(",")
            #off.write("\n")
            print "average bog: ", sum(logbook.select("max"))/len(logbook.select("max"))
            #bog.write(str(sum(logbook.select("max"))/len(logbook.select("max"))))
            #bog.write(",")
            #bog.write("\n")
            #accuracy
            plt.figure(2)
            plt.title("accuracy")
            plt.plot(offlinegen,accuracy)            
            plt.axis([0,ngen,0,1])
            plt.show()
            #diversity
            #diver.write(str(div))
            #diver.write(",")
            plt.figure(3)
            plt.title("Diversity")
            plt.plot(xrange(len(div)),div)
            #plt.axis([0,len(div),0,maxt])
            plt.show()
            #min av max
            #mini.write(str(logbook.select("min")))
            #mini.write(",")       
            #mini.write("\n") 
            #aver.write(str(logbook.select("avg")))
            #aver.write(",")
            #aver.write("\n")
            #maxi.write(str(logbook.select("max")))  
            #maxi.write(",")
            #maxi.write("\n")
            #print logbook.select("min")
            #print " "
            #print logbook.select("avg")
            #print " "
            #print logbook.select("max")
            plt.figure(4)
            plt.title("min, avg, max")
            plt.plot(xrange(ngen+1),logbook.select("min"),label="min")
            plt.plot(xrange(ngen+1),logbook.select("avg"),label="avg")
            plt.plot(xrange(ngen+1),logbook.select("max"),label="max")
            plt.legend(loc=8)
            plt.axis([0,ngen,0,maxt])
            plt.show()
            #stability
            #plt.figure(5)
            #plt.title("Stability")
            #stability=[]
            #for i in xrange(len(accuracy)):
            #    stability.append(max(0,accuracy[i]-accuracy[i-1]))
            #plt.plot(offlinegen,stability)            
            #plt.axis([0,ngen,0,1])
            #plt.show()
            #off.close()
            #bog.close()
            #mini.close()
            #aver.close()
            #maxi.close()
            #diver.close()
        
    return population, logbook
 def ask(self):
     self.offspring = varOr(self.population, self.toolbox,
                            self.configuration.lambda_,
                            1 - self.configuration.mutpb,
                            self.configuration.mutpb)
     return self.offspring
Esempio n. 34
0
def optimize(population,
             toolbox,
             mu,
             lambda_,
             net,
             X,
             y,
             X_val,
             y_val,
             X_test,
             y_test,
             rated,
             njobs,
             path_group,
             cxpb,
             mutpb,
             ngen,
             stats=None,
             halloffame=None,
             verbose=__debug__):
    assert lambda_ >= mu, "lambda must be greater or equal to mu."

    # Evaluate the individuals with an invalid fitness
    invalid_ind = [ind for ind in population if not ind.fitness.valid]
    # fitnesses=[]
    # for individual in invalid_ind:
    #     m=rbf_optim(individual, X, y, X_val, y_val, X_test, y_test)
    #     fitnesses.append(m)

    ncpus = joblib.load(os.path.join(path_group, 'total_cpus.pickle'))
    gpu_status = joblib.load(os.path.join(path_group, 'gpu_status.pickle'))

    njobs = int(ncpus - gpu_status)
    cpu_status = njobs
    joblib.dump(cpu_status, os.path.join(path_group, 'cpu_status.pickle'))

    pool = mp.Pool(njobs)
    results = [
        pool.apply_async(rbf_optim,
                         args=(np.array(individual).ravel(), net, X, y, X_val,
                               y_val, X_test, y_test, rated))
        for individual in invalid_ind
    ]
    fitnesses = [p.get() for p in results]
    pool.close()
    pool.terminate()
    pool.join()
    # fitnesses = Parallel(n_jobs=njobs)(delayed(rbf_optim)(np.array(individual).ravel(), net, X, y, X_val, y_val, X_test, y_test, rated) for
    #                                    individual in invalid_ind)

    # fitnesses = toolbox.map(toolbox.evaluate, invalid_ind)
    for ind, fit in zip(invalid_ind, fitnesses):
        ind.fitness.values = fit

    if halloffame is not None:
        halloffame.update(population)

    logbook = tools.Logbook()
    # Gather all the fitnesses in one list and compute the stats
    fits = np.array([ind.fitness.values for ind in population])

    maximums = np.nanmax(fits, axis=0)
    minimums = np.nanmin(fits, axis=0)
    logbook.header = ['gen', 'nevals'
                      ] + ['Max_mae:', 'Min_mae:', 'Max_rms:', 'Min_rms:']

    record = {
        'Max_mae:': maximums[0],
        'Min_mae:': minimums[0],
        'Max_rms:': maximums[2],
        'Min_rms:': minimums[2]
    }
    print('GA rbf running generation 0')
    print(record)

    logbook.record(gen=0, nevals=len(invalid_ind), **record)
    if verbose:
        print(logbook.stream)

    # Begin the generational process
    with elapsed_timer() as eval_elapsed:
        for gen in range(1, ngen + 1):
            # Vary the population
            offspring = algorithms.varOr(population, toolbox, lambda_, cxpb,
                                         mutpb)

            # Evaluate the individuals with an invalid fitness
            invalid_ind = [ind for ind in offspring if not ind.fitness.valid]

            ncpus = joblib.load(os.path.join(path_group, 'total_cpus.pickle'))
            gpu_status = joblib.load(
                os.path.join(path_group, 'gpu_status.pickle'))

            njobs = int(ncpus - gpu_status)
            cpu_status = njobs
            joblib.dump(cpu_status,
                        os.path.join(path_group, 'cpu_status.pickle'))

            pool = mp.Pool(njobs)
            results = [
                pool.apply_async(rbf_optim,
                                 args=(np.array(individual).ravel(), net, X, y,
                                       X_val, y_val, X_test, y_test, rated))
                for individual in invalid_ind
            ]
            fitnesses = [p.get() for p in results]
            pool.close()
            pool.terminate()
            pool.join()
            # fitnesses = Parallel(n_jobs=njobs)(
            #     delayed(rbf_optim)(np.array(individual).ravel(), net, X, y, X_val, y_val, X_test, y_test, rated) for
            #     individual in invalid_ind)
            # fitnesses = toolbox.map(toolbox.evaluate, invalid_ind)
            for ind, fit in zip(invalid_ind, fitnesses):
                ind.fitness.values = fit
            fits = np.array([ind.fitness.values for ind in population])

            maximums = np.nanmax(fits, axis=0)
            minimums = np.nanmin(fits, axis=0)
            # Update the hall of fame with the generated individuals
            if halloffame is not None:
                halloffame.update(offspring)

            # Select the next generation population
            population[:] = toolbox.select(offspring, mu)

            # Update the statistics with the new population
            record = {
                'Max_mae:': maximums[0],
                'Min_mae:': minimums[0],
                'Max_rms:': maximums[2],
                'Min_rms:': minimums[2]
            }
            print('GA rbf running generation ', str(gen))
            print(record)
            logbook.record(gen=gen, nevals=len(invalid_ind), **record)
            if verbose:
                print(logbook.stream)
            if eval_elapsed() > 1800:
                break
    return population, logbook
Esempio n. 35
0
                 creator.Individual,
                 toolbox.bit,
                 n=num_connections)
toolbox.register('population',
                 tools.initRepeat,
                 list,
                 toolbox.individual,
                 n=population_size)
toolbox.register('evaluate', evaluate_fitness)
toolbox.register('mate', tools.cxUniform, indpb=0.1)
toolbox.register('mutate', tools.mutFlipBit, indpb=0.05)
toolbox.register('select', tools.selNSGA2)

population = toolbox.population()
fits = toolbox.map(toolbox.evaluate, population)
for fit, ind in zip(fits, population):
    ind.fitness.values = fit

for gen in range(num_generations):
    offspring = algorithms.varOr(population,
                                 toolbox,
                                 lambda_=population_size,
                                 cxpb=0.5,
                                 mutpb=0.1)
    fits = toolbox.map(toolbox.evaluate, offspring)
    for fit, ind in zip(fits, offspring):
        ind.fitness.values = fit
    population = toolbox.select(offspring + population, k=population_size)
    print('Generation =', gen, 'Best Fitness =',
          min([ind.fitness.values for ind in population]))
Esempio n. 36
0
import knn, random
from deap import algorithms, base, creator, tools

def evalFitness(individual):
    return knn.classification_rate(features=individual), sum(individual)

creator.create("FitnessMulti", base.Fitness, weights=(1.0, -1.0))
creator.create("Individual", list, fitness=creator.FitnessMulti)

toolbox = base.Toolbox()
toolbox.register("bit", random.randint, 0, 1)
toolbox.register("individual", tools.initRepeat, creator.Individual,
                 toolbox.bit, n=13)
toolbox.register("population", tools.initRepeat, list, toolbox.individual, n=100)
toolbox.register("evaluate", evalFitness)
toolbox.register("mate", tools.cxUniform, indpb=0.1)
toolbox.register("mutate", tools.mutFlipBit, indpb=0.05)
toolbox.register("select", tools.selNSGA2)

population = toolbox.population()
fits = toolbox.map(toolbox.evaluate, population)
for fit, ind in zip(fits, population):
    ind.fitness.values = fit

for gen in range(50):
    offspring = algorithms.varOr(population, toolbox, lambda_=100, cxpb=0.5,mutpb=0.1)
    fits = toolbox.map(toolbox.evaluate, offspring)
    for fit, ind in zip(fits, offspring):
        ind.fitness.values = fit
    population = toolbox.select(offspring + population, k=100)
Esempio n. 37
0
    def run(self,
            X,
            y,
            X_test,
            y_test,
            scale_y,
            mfs,
            mu,
            lambda_,
            cxpb=0.6,
            mutpb=0.4,
            ngen=300):
        perf = np.inf
        front_best = None
        rules = copy.deepcopy(self.rules)
        self.population = self.toolbox.population()

        param_ind = creator.Individual(self.x)
        self.population.pop()
        self.population.insert(len(self.population), param_ind)
        i = 0
        while i < 0.5 * len(self.population):
            param_ind = mut_fun(self.x, 0, self.sigma, 0.8, self.lower_bound,
                                self.upper_bound, 0.6)
            param_ind = creator.Individual(param_ind[0])
            self.population.pop(i)
            self.population.insert(i, param_ind)
            i += 1
        assert lambda_ >= mu, "lambda must be greater or equal to mu."

        # Evaluate the individuals with an invalid fitness
        invalid_ind = [ind for ind in self.population if not ind.fitness.valid]
        rules = copy.deepcopy(self.rules)
        fit1 = evaluate(
            np.array(invalid_ind[-1]).ravel(), X, y, X_test, y_test, scale_y,
            self.rated, mfs, rules, self.p, self.resampling, self.num_samples,
            self.n_ratio)
        print('initial candidate error ', fit1[1])
        rules = copy.deepcopy(self.rules)
        fitnesses = Parallel(n_jobs=self.njobs)(
            delayed(evaluate)(np.array(individual).ravel(), X, y, X_test,
                              y_test, scale_y, self.rated, mfs, rules, self.p,
                              self.resampling, self.num_samples, self.n_ratio)
            for individual in invalid_ind)

        # fitnesses = toolbox.map(toolbox.evaluate, invalid_ind)
        for ind, fit in zip(invalid_ind, fitnesses):
            ind.fitness.values = fit

        if self.hof is not None:
            self.hof.update(self.population)

        self.logbook = tools.Logbook()
        # Gather all the fitnesses in one list and compute the stats
        fits = np.array([ind.fitness.values for ind in self.population])

        maximums = np.nanmax(fits, axis=0)
        minimums = np.nanmin(fits, axis=0)
        self.logbook.header = ['gen', 'nevals'] + [
            'Max_sse:', 'Min_sse:', 'Max_mae:', 'Min_mae:'
        ]
        self.logger.info('Iter: %s, Max_sse: %s, Min_mae: %s', 0, *minimums)
        record = {
            'Max_sse:': maximums[0],
            'Min_sse:': minimums[0],
            'Max_mae:': maximums[1],
            'Min_mae:': minimums[1]
        }
        print('GA rbf running generation 0')
        print(record)

        self.logbook.record(gen=0, nevals=len(invalid_ind), **record)

        print(self.logbook.stream)

        # Begin the generational process
        for gen in range(1, ngen + 1):
            # Vary the population
            rules = copy.deepcopy(self.rules)
            offspring = algorithms.varOr(self.population, self.toolbox,
                                         lambda_, cxpb, mutpb)

            # Evaluate the individuals with an invalid fitness
            invalid_ind = [ind for ind in offspring if not ind.fitness.valid]
            fitnesses = Parallel(n_jobs=self.njobs)(delayed(evaluate)(
                np.array(individual).ravel(), X, y, X_test, y_test, scale_y,
                self.rated, mfs, rules, self.p, self.resampling,
                self.num_samples, self.n_ratio) for individual in invalid_ind)
            # fitnesses = toolbox.map(toolbox.evaluate, invalid_ind)
            for ind, fit in zip(invalid_ind, fitnesses):
                ind.fitness.values = fit
            fits = np.array([ind.fitness.values for ind in self.population])

            maximums = np.nanmax(fits, axis=0)
            minimums = np.nanmin(fits, axis=0)
            # Update the hall of fame with the generated individuals
            if self.hof is not None:
                self.hof.update(self.population)

            # Select the next generation population
            self.population[:] = self.toolbox.select(offspring, mu)

            # Update the statistics with the new population
            record = {
                'Max_sse:': maximums[0],
                'Min_sse:': minimums[0],
                'Max_mae:': maximums[1],
                'Min_mae:': minimums[1]
            }

            print('GA rbf running generation ', str(gen))
            print(record)
            self.logbook.record(gen=gen, nevals=len(invalid_ind), **record)

            front = self.population
            for i in range(len(front)):
                if front[i].fitness.getValues()[0] < perf:
                    front_best = front[i]
                    perf = front[i].fitness.getValues()[0]
        self.logger.info('Iter: %s, Max_sse: %s, Min_mae: %s', str(gen),
                         *minimums)
        self.fmodel = self.evaluate(
            np.array(front_best).ravel(), X, y, X_test, y_test, scale_y,
            self.rated, mfs, self.rules, self.p, self.resampling)
def main():
    # reset bookkeeping
    System.resetBookKeeping()

    ## use existing bookkeeping data
    #bookkeeping = np.load('bookkeeping.npz')

    manager = Manager()
    System.bookkeeping = manager.dict(System.bookkeeping)

    pool = Pool(processes=num_processes)
    toolbox.register("map", pool.map)

    #System.bookkeeping = dict(System.bookkeeping)
    #toolbox.register("map", map)

    print "MULTIOBJECTIVE OPTIMIZATION: parallel version"
    start_delta_time = time.time()

    # optimization
    random.seed(64)

    logbook = tools.Logbook()
    logbook.header = ["gen", "evals", "nfront", "mean1", "mean2", "tol1", "tol2", "time"]

    pop = toolbox.population(n=NPOP)
    fits = toolbox.map(toolbox.evaluate, pop)
    for fit,ind in zip(fits, pop):
        ind.fitness.values = fit

    nevals = NPOP

    g = 1
    distances1 = []
    distances2 = []
    frontfitlast = np.array([[1., 0.]])
    nevalsum = 0
    evolStop = False
    halloffame = tools.ParetoFront()
    while not evolStop:
        offspring = algorithms.varOr(pop, toolbox, lambda_=NPOP, cxpb=0.9, mutpb=0.1)
        invalid_ind = [ind for ind in offspring if not ind.fitness.valid]
        nevals = len(invalid_ind)
        nevalsum += nevals
        fits = toolbox.map(toolbox.evaluate, invalid_ind)
        for fit,ind in zip(fits, invalid_ind):
            ind.fitness.values = fit
        pop = toolbox.select(offspring+pop, k=NPOP)
        front = toolbox.sort(offspring+pop, k=NPOP, first_front_only=True)[0]
        halloffame.update(front)

        ## check if stop evolution
        #distance=[]
        #frontfit = [ind.fitness.values for ind in halloffame]
        #for obj in frontfit:
            #vector = np.array(frontfitlast)-np.array(obj)
            #distance.append(min(np.linalg.norm(vector, axis=1)))
        #distances.append(np.mean(distance))
        #longest = 0.
        #distances.append(np.mean(distance))
        #vertlongest = 0.
        #horilongest = 0.
        #for point1 in frontfit:
            #for point2 in frontfit:
                ##dist = np.linalg.norm(np.array(point1)-np.array(point2))
                #if dist > longest:
                    #longest = dist
        #tol = longest/NPOP
        #tol = np.maximum(tol, TOL)
        #evolStop = (len(distances)>NGEN and all(np.array(distances[-NGEN:])<tol)) or g>NMAX
        #frontfitlast = frontfit
        # check if stop evolution
        distance1=[]
        distance2=[]
        frontfit = np.array([ind.fitness.values for ind in halloffame])
        frontfit[frontfit[:,1] == 0,1] = 1.
        frontfitlast[frontfitlast[:,1] == 0,1] = 1.
        for obj in frontfit:
            #vector = np.array(frontfitlast)-np.array(obj)
            #distance.append(min(np.linalg.norm(vector, axis=1)))
            distance1.append(min(np.abs(np.log10(frontfitlast[:,0])-np.log10(obj[0]))))
            #distance2.append(min(np.abs(frontfitlast[:,1]-obj[1])))
            distance2.append(min(np.abs(np.log10(frontfitlast[:,1])-np.log10(obj[1]))))
        distances1.append(np.mean(distance1))
        distances2.append(np.mean(distance2))
        longest1 = 0.
        longest2 = 0.
        for point1 in frontfit:
            for point2 in frontfit:
                dist1 = np.abs(np.log10(point1[0])-np.log10(point2[0]))
                #dist2 = np.abs(point1[1]-point2[1])
                dist2 = np.abs(np.log10(point1[1])-np.log10(point2[1]))
                if dist1 > longest1:
                    longest1 = dist1
                if dist2 > longest2:
                    longest2 = dist2
        tol1 = np.maximum(longest1/NPOP,TOL1)
        tol2 = np.maximum(longest2/NPOP,TOL2)
        evolStop = (len(distances1)>NGEN and all(np.array(distances1[-NGEN:])<tol1)
            and all(np.array(distances2[-NGEN:])<tol2)) or g>NMAX
        frontfitlast = frontfit

        # Gather all the fitnesses in one list and print the stats
        delta_time = time.time() - start_delta_time
        logbook.record(gen=g, evals=nevals,nfront=len(halloffame),
                mean1=distances1[-1], mean2=distances2[-1],
                tol1=tol1, tol2=tol2, time=delta_time)
        print(logbook.stream)

        g+=1

    pool.close()
    pool.join()

    System.bookkeeping = System.bookkeeping.copy()

    delta_time = time.time() - start_delta_time
    print 'DONE: {} s'.format(str(datetime.timedelta(seconds=delta_time)))


    return pop, logbook, halloffame, nevalsum
Esempio n. 39
0
    def eaMuCommaLambda(cls,
                        population,
                        toolbox,
                        mu,
                        lambda_,
                        cxpb,
                        mutpb,
                        ngen,
                        stats=None):
        ''' Method has been copied from DEAP framework in order to add some additional features (like adding verbosity
            and a method which collect additional data related with simulations).

            If you want to understand meaning of arguments please see usage of this method in "Execute" and read about
            algorithm attributes in class description.
        '''

        assert lambda_ >= mu, "lambda must be greater or equal to mu."

        # Create new logbook
        cls.logbook = tools.Logbook()
        cls.logbook.header = ['gen', 'nevals'
                              ] + (stats.fields if stats else [])

        # Evaluate the individuals with an invalid fitness
        invalid_ind = [ind for ind in population if not ind.fitness.valid]
        fitnesses = toolbox.map(toolbox.evaluate, invalid_ind)
        for ind, fit in zip(invalid_ind, fitnesses):
            ind.fitness.values = fit

        # Update the statistics with the new population
        record = stats.compile(population) if stats is not None else {}
        cls.logbook.record(gen=0, nevals=len(invalid_ind), **record)

        cls.listOfPopulations = []
        cls.listOfPopulations.append(copy.deepcopy(population))

        # Begin the generational process
        for gen in range(1, ngen + 1):
            if cls.lverbose:
                print("generation no:", gen)

            # Vary the population
            offspring = varOr(population, toolbox, lambda_, cxpb, mutpb)

            # Evaluate the individuals with an invalid fitness
            invalid_ind = [ind for ind in offspring if not ind.fitness.valid]
            fitnesses = toolbox.map(toolbox.evaluate, invalid_ind)
            for ind, fit in zip(invalid_ind, fitnesses):
                ind.fitness.values = fit

            # Select the next generation population
            population[:] = toolbox.select(offspring, mu)

            # Update the statistics with the new population
            record = stats.compile(population) if stats is not None else {}
            cls.logbook.record(gen=gen, nevals=len(invalid_ind), **record)

            cls.listOfPopulations.append(copy.deepcopy(population))

        # Get final population
        cls.finalPopulation = population
Esempio n. 40
0
def checkpoint_eaMuPlusLambda(population, 
                              toolbox, 
                              mu, 
                              lambda_, 
                              cxpb, 
                              mutpb, 
                              ngen,
                              logbook,
                              start_gen=0,
                              stats=None, 
                              halloffame=None, 
                              FREQ=DEFAULT_CHECKPOINTFREQ,
                              checkpoint=None,
                              CPOUT=None,
                              verbose=__debug__,
                              timelimit=None,
                              termination=None):
    """This is the :math:`(\mu + \lambda)` evolutionary algorithm.
    
    :param population: A list of individuals.
    :param toolbox: A :class:`~deap.base.Toolbox` that contains the evolution
                    operators.
    :param mu: The number of individuals to select for the next generation.
    :param lambda\_: The number of children to produce at each generation.
    :param cxpb: The probability that an offspring is produced by crossover.
    :param mutpb: The probability that an offspring is produced by mutation.
    :param ngen: The number of generation.
    :param stats: A :class:`~deap.tools.Statistics` object that is updated
                  inplace, optional.
    :param halloffame: A :class:`~deap.tools.HallOfFame` object that will
                       contain the best individuals, optional.
    :param verbose: Whether or not to log the statistics.
    :returns: The final population
    :returns: A class:`~deap.tools.Logbook` with the statistics of the
              evolution.
    
    The algorithm takes in a population and evolves it in place using the
    :func:`varOr` function. It returns the optimized population and a
    :class:`~deap.tools.Logbook` with the statistics of the evolution. The
    logbook will contain the generation number, the number of evalutions for
    each generation and the statistics if a :class:`~deap.tools.Statistics` is
    given as argument. The *cxpb* and *mutpb* arguments are passed to the
    :func:`varOr` function. The pseudocode goes as follow ::

        evaluate(population)
        for g in range(ngen):
            offspring = varOr(population, toolbox, lambda_, cxpb, mutpb)
            evaluate(offspring)
            population = select(population + offspring, mu)

    First, the individuals having an invalid fitness are evaluated. Second,
    the evolutionary loop begins by producing *lambda_* offspring from the
    population, the offspring are generated by the :func:`varOr` function. The
    offspring are then evaluated and the next generation population is
    selected from both the offspring **and** the population. Finally, when
    *ngen* generations are done, the algorithm returns a tuple with the final
    population and a :class:`~deap.tools.Logbook` of the evolution.

    This function expects :meth:`toolbox.mate`, :meth:`toolbox.mutate`,
    :meth:`toolbox.select` and :meth:`toolbox.evaluate` aliases to be
    registered in the toolbox. This algorithm uses the :func:`varOr`
    variation.
    """

    if timelimit:
        terminator = TimeTerminator(limit=timelimit)
    else:
        terminator = GenerationTerminator(limit=ngen)
        
    if checkpoint:
        # Removed feature
        print "Resuming from generation", start_gen
        print logbook.stream
    else:
        
        logbook = tools.Logbook()
        logbook.header = ['gen', 'evals', 'memoize', "maxdepth"] + (stats.fields if stats else [])

        # Evaluate the individuals with an invalid fitness
        invalid_ind = [ind for ind in population if not ind.fitness.valid]
        fitnesses = toolbox.map(toolbox.evaluate, invalid_ind)
        
        for ind, fit in zip(invalid_ind, fitnesses):
            ind.fitness.values = fit

        if halloffame is not None:
            halloffame.update(population)

        record = stats.compile(population) if stats is not None else {}        
        logbook.record(gen=start_gen, evals=len(invalid_ind), memoize=0, maxdepth=numpy.max([x.height for x in population]), **record)
        
    if verbose:
        print logbook.stream

    if len(population) == 1:
        population.append(population[0])

    
    if termination == "auto":
        #TODO: Place somewhere better
        terminator = MOEATerminationDetection()

    # Begin the generational process
    gen = start_gen
    while not terminator.done():
        # Vary the population        
        offspring = varOr(population, toolbox, lambda_, cxpb, mutpb)
        
        # Evaluate the individuals with an invalid fitness
        invalid_ind = [ind for ind in offspring if not ind.fitness.valid]
        fitnesses = toolbox.map(toolbox.evaluate, invalid_ind)
        for ind, fit in zip(invalid_ind, fitnesses):
            ind.fitness.values = fit
            
        # Update the hall of fame with the generated individuals
        # Update termination conditions
        gen+=1
        if termination == "auto":
            P = [list(y) for y in [x.fitness.values for x in halloffame[:]]]
            halloffame.update(offspring)
            Q = [list(y) for y in [x.fitness.values for x in halloffame[:]]]
            terminator.update(P,Q, gen-1)
        else:
            halloffame.update(offspring)
            terminator.update(gen=gen)
        
        # Select the next generation population
        population[:] = toolbox.select(population + offspring, mu)
            
        record = stats.compile(population) if stats is not None else {}

        logbook.record(gen=gen, evals=len(invalid_ind), memoize=toolbox.memoizecount(), maxdepth=numpy.max([x.height for x in population]), **record ) 

        if verbose: print logbook.stream

        # Store checkpoint if gen is valid
        if CPOUT:
            continue # Checkpoints disabled
            this_checkpoint = CPOUT+"/"+str(gen)+".checkpoint"
            check_store_checkpoint(this_checkpoint, 
                             population, 
                             gen, 
                             halloffame,
                             logbook,
                             toolbox,
                             rndstate=random.getstate(),
                             numpystate=numpy.random.get_state(),
                             pset=None
            )

                
    if CPOUT :
        this_checkpoint = CPOUT+"/"+str(ngen)+".checkpoint"
        store_checkpoint(this_checkpoint, 
                             population, 
                             ngen, 
                             halloffame,
                             logbook,
                             toolbox,
                             rndstate=random.getstate(),
                             numpystate=numpy.random.get_state(),
                             pset=None
            )
    return population, logbook
def main():
    ## reset bookkeeping
    #Component.resetCostKeeping()
    #Component.resetPfKeeping()
    #Component.resetRiskKeeping()

    # use existing pf data
    suffix = rate2suffix(icorr_mean_list)
    pfname = 'pfkeeping_'+suffix+'.npz'
    costname = 'costkeeping_'+suffix+'.npz'
    datapath = os.path.join(os.path.abspath('./'), 'data')
    pffile = os.path.join(datapath,pfname)
    costfile = os.path.join(datapath,costname)
    pfkeeping = np.load(pffile)
    Component.pfkeeping['flexure'] = pfkeeping['flexure']
    Component.pfkeeping['shear'] = pfkeeping['shear']
    Component.pfkeeping['deck'] = pfkeeping['deck']
    # use existing cost data
    costkeeping = np.load(costfile)
    Component.costkeeping['flexure'] = costkeeping['flexure']
    Component.costkeeping['shear'] = costkeeping['shear']
    Component.costkeeping['deck'] = costkeeping['deck']

    #manager = Manager()
    #Component.pfkeeping = manager.dict(Component.pfkeeping)
    #Component.costkeeping = manager.dict(Component.costkeeping)
    #Component.riskkeeping = manager.dict(Component.riskkeeping)
    #pool = Pool(processes=num_processes)
    #toolbox.register("map", pool.map)

    Component.pfkeeping = dict(Component.pfkeeping)
    Component.costkeeping = dict(Component.costkeeping)
    Component.riskkeeping = dict(Component.riskkeeping)
    toolbox.register("map", map)

    print "MULTIOBJECTIVE OPTIMIZATION: parallel version"
    start_delta_time = time.time()

    # optimization
    #random.seed(64)

    logbook = tools.Logbook()
    logbook.header = ["gen", "evals", "nfront", "mean1", "mean2", "tol1", "tol2", "time"]

    pop = toolbox.population(n=NPOP)
    fits = toolbox.map(toolbox.evaluate, pop)
    for fit,ind in zip(fits, pop):
        ind.fitness.values = fit

    nevals = NPOP

    g = 1
    distances1 = []
    distances2 = []
    frontfitlast = np.array([[1., 0.]])
    nevalsum = 0
    evolStop = False
    halloffame = tools.ParetoFront()
    while not evolStop:
        offspring = algorithms.varOr(pop, toolbox, lambda_=NPOP, cxpb=0.9, mutpb=0.1)
        invalid_ind = [ind for ind in offspring if not ind.fitness.valid]
        nevals = len(invalid_ind)
        nevalsum += nevals
        fits = toolbox.map(toolbox.evaluate, invalid_ind)
        for fit,ind in zip(fits, invalid_ind):
            ind.fitness.values = fit
        pop = toolbox.select(offspring+pop, k=NPOP)
        front = toolbox.sort(offspring+pop, k=NPOP, first_front_only=True)[0]
        halloffame.update(front)

        # check if stop evolution
        distance1=[]
        distance2=[]
        frontfit = np.array([ind.fitness.values for ind in halloffame])
        frontfit[frontfit[:,1] == 0,1] = 1.
        frontfitlast[frontfitlast[:,1] == 0,1] = 1.
        for obj in frontfit:
            #vector = np.array(frontfitlast)-np.array(obj)
            #distance.append(min(np.linalg.norm(vector, axis=1)))
            distance1.append(min(np.abs(np.log10(frontfitlast[:,0])-np.log10(obj[0]))))
            #distance2.append(min(np.abs(frontfitlast[:,1]-obj[1])))
            distance2.append(min(np.abs(np.log10(frontfitlast[:,1])-np.log10(obj[1]))))
        distances1.append(np.mean(distance1))
        distances2.append(np.mean(distance2))
        longest1 = 0.
        longest2 = 0.
        for point1 in frontfit:
            for point2 in frontfit:
                dist1 = np.abs(np.log10(point1[0])-np.log10(point2[0]))
                #dist2 = np.abs(point1[1]-point2[1])
                dist2 = np.abs(np.log10(point1[1])-np.log10(point2[1]))
                if dist1 > longest1:
                    longest1 = dist1
                if dist2 > longest2:
                    longest2 = dist2
        tol1 = np.maximum(longest1/NPOP,TOL1)
        tol2 = np.maximum(longest2/NPOP,TOL2)
        evolStop = (len(distances1)>NGEN and all(np.array(distances1[-NGEN:])<tol1)
            and all(np.array(distances2[-NGEN:])<tol2)) or g>NMAX
        frontfitlast = frontfit

        # Gather all the fitnesses in one list and print the stats
        delta_time = time.time() - start_delta_time
        logbook.record(gen=g, evals=nevals,nfront=len(halloffame),
                mean1=distances1[-1], mean2=distances2[-1],
                tol1=tol1, tol2=tol2, time=delta_time)
        print(logbook.stream)

        g+=1

    #pool.close()
    #pool.join()

    delta_time = time.time() - start_delta_time
    print 'DONE: {} s'.format(str(datetime.timedelta(seconds=delta_time)))


    return pop, logbook, halloffame, nevalsum
def eaMuPlusLambda(population,
                   toolbox,
                   mu,
                   lambda_,
                   cxpb,
                   mutpb,
                   ngen,
                   stats=None,
                   halloffame=None,
                   verbose=__debug__,
                   graph=False):
    logbook = tools.Logbook()
    logbook.header = ['gen', 'nevals'] + (stats.fields if stats else [])

    # Evaluate the individuals with an invalid fitness
    invalid_ind = [ind for ind in population if not ind.fitness.valid]
    fitnesses = toolbox.map(toolbox.evaluate, invalid_ind)
    for ind, fit in zip(invalid_ind, fitnesses):
        ind.fitness.values = fit

    if halloffame is not None:
        halloffame.update(population)

    record = stats.compile(population) if stats is not None else {}
    logbook.record(gen=0, nevals=len(invalid_ind), **record)
    if verbose:
        print logbook.stream
    if graph:
        graph, pop_series = graph_gen(refmap, population, target)
    pbar = range(0, ngen) if verbose else trange(ngen, leave=False)
    for gen in pbar:
        # Vary the population
        offspring = algorithms.varOr(population, toolbox, lambda_, cxpb, mutpb)

        # Evaluate the individuals with an invalid fitness
        invalid_ind = [ind for ind in offspring if not ind.fitness.valid]
        fitnesses = toolbox.map(toolbox.evaluate, invalid_ind)
        for ind, fit in zip(invalid_ind, fitnesses):
            ind.fitness.values = fit

        # Update the hall of fame with the generated individuals
        if halloffame is not None:
            halloffame.update(offspring)

        # Select the next generation population
        population[:] = toolbox.select(population + offspring, mu)

        # Update the statistics with the new population
        record = stats.compile(population) if stats is not None else {}
        logbook.record(gen=gen, nevals=len(invalid_ind), **record)

        if graph:
            update_series(graph, pop_series, population)

        if verbose:
            print logbook.stream
        else:
            desc = "pop: " + str(len(population)) + " gen: " + str(ngen)
            pbar.set_description(desc)

    return record, logbook
Esempio n. 43
0
def eaMuPlusLambda(population,
                   toolbox,
                   mu,
                   lambda_,
                   cxpb,
                   mutpb,
                   ngen,
                   stats=None,
                   halloffame=None,
                   verbose=__debug__):
    """This is the :math:`(\mu + \lambda)` evolutionary algorithm.

    :param population: A list of individuals.
    :param toolbox: A :class:`~deap.base.Toolbox` that contains the evolution
                    operators.
    :param mu: The number of individuals to select for the next generation.
    :param lambda\_: The number of children to produce at each generation.
    :param cxpb: The probability that an offspring is produced by crossover.
    :param mutpb: The probability that an offspring is produced by mutation.
    :param ngen: The number of generation.
    :param stats: A :class:`~deap.tools.Statistics` object that is updated
                  inplace, optional.
    :param halloffame: A :class:`~deap.tools.HallOfFame` object that will
                       contain the best individuals, optional.
    :param verbose: Whether or not to log the statistics.
    :returns: The final population
    :returns: A class:`~deap.tools.Logbook` with the statistics of the
              evolution.

    The algorithm takes in a population and evolves it in place using the
    :func:`varOr` function. It returns the optimized population and a
    :class:`~deap.tools.Logbook` with the statistics of the evolution. The
    logbook will contain the generation number, the number of evalutions for
    each generation and the statistics if a :class:`~deap.tools.Statistics` is
    given as argument. The *cxpb* and *mutpb* arguments are passed to the
    :func:`varOr` function. The pseudocode goes as follow ::

        evaluate(population)
        for g in range(ngen):
            offspring = varOr(population, toolbox, lambda_, cxpb, mutpb)
            evaluate(offspring)
            population = select(population + offspring, mu)

    First, the individuals having an invalid fitness are evaluated. Second,
    the evolutionary loop begins by producing *lambda_* offspring from the
    population, the offspring are generated by the :func:`varOr` function. The
    offspring are then evaluated and the next generation population is
    selected from both the offspring **and** the population. Finally, when
    *ngen* generations are one, the algorithm returns a tuple with the final
    population and a :class:`~deap.tools.Logbook` of the evolution.

    This function expects :meth:`toolbox.mate`, :meth:`toolbox.mutate`,
    :meth:`toolbox.select` and :meth:`toolbox.evaluate` aliases to be
    registered in the toolbox. This algorithm uses the :func:`varOr`
    variation.
    """
    logbook = tools.Logbook()
    logbook.header = ['gen', 'nevals'] + (stats.fields if stats else [])

    # Evaluate the individuals with an invalid fitness
    invalid_ind = [ind for ind in population if not ind.fitness.valid]
    fitnesses = toolbox.map(toolbox.evaluate, invalid_ind)
    for ind, fit in zip(invalid_ind, fitnesses):
        ind.fitness.values = fit

    if halloffame is not None:
        halloffame.update(population)

    record = stats.compile(population) if stats is not None else {}
    logbook.record(gen=0, nevals=len(invalid_ind), **record)

    handler = logging.StreamHandler()
    handler.setLevel(logging.INFO)
    handler.setFormatter(logging.Formatter(fmt='%(message)s'))

    # #old_handler = eaMuPlusLambda._log.handlers[0]

    # # eaMuPlusLambda._log.removeHandler(old_handler)
    # eaMuPlusLambda._log.addHandler(handler)
    logger = logging.getLogger('algorithms')
    logger.setLevel(logging.INFO)
    logger.addHandler(handler)

    if verbose:
        # print(logbook.stream)
        # eaMuPlusLambda._log.info(logbook.stream)
        logger.info(logbook.stream)

    # Begin the generational process
    for gen in range(1, ngen + 1):
        try:
            # Vary the population
            offspring = varOr(population, toolbox, lambda_, cxpb, mutpb)

            # Evaluate the individuals with an invalid fitness
            invalid_ind = [ind for ind in offspring if not ind.fitness.valid]
            fitnesses = toolbox.map(toolbox.evaluate, invalid_ind)
            for ind, fit in zip(invalid_ind, fitnesses):
                ind.fitness.values = fit

            # Update the hall of fame with the generated individuals
            if halloffame is not None:
                halloffame.update(offspring)

            # Select the next generation population
            population[:] = toolbox.select(population + offspring, mu)

            # Update the statistics with the new population
            record = stats.compile(population) if stats is not None else {}
            logbook.record(gen=gen, nevals=len(invalid_ind), **record)
            if verbose:
                # print(logbook.stream)
                # eaMuPlusLambda._log.info(logbook.stream)
                logger.info(logbook.stream)
        except KeyboardInterrupt:
            # print('Interrupt evolution from the user... continue PKP!')
            eaMuPlusLambda._log.warning(
                'Interrupt evolution from the user... continue PKP!')
            break

    return population, logbook
Esempio n. 44
0
def main(args):
    run_date = time.time()

    # Configure Logging
    root = logging.getLogger()
    if(args.debug):
        root.setLevel(logging.DEBUG)
    else:
        root.setLevel(logging.INFO)

    if args.quiet:
        root.propogate = False

    # Set up the database.
    pgdb = DBUtils(config_file=DB_CONFIG_FILE)

    # Get the name of this agent trail for later use
    at = AgentTrail()
    at.readTrail(args.trail, DB_CONFIG_FILE)
    trail_name = at.getName()

    if not args.quiet and not args.debug and not args.script_mode:
        try:
            TOTAL_GENERATIONS = (len(args.network) *
                args.generations * args.repeat)
            widgets = ['Processed: ', progressbar.Percentage(), ' ',
                progressbar.Bar(marker=progressbar.RotatingMarker()),
                ' ', progressbar.ETA()]
            pbar = progressbar.ProgressBar(
                widgets=widgets,
                maxval=TOTAL_GENERATIONS).start()
        except:
            pbar = None
    else:
        pbar = None

    current_overall_gen = 0

    for curr_network in args.network:

        # Query the database to get the network information.
        pybrain_network = pgdb.getNetworkByID(curr_network)

        temp_f_h, temp_f_network = tempfile.mkstemp()
        os.close(temp_f_h)

        with open(temp_f_network, "w") as f:
            pickle.dump(pybrain_network, f)

        # TODO: Need to fix this for chemistry support here.
        if "Chemical" in pybrain_network.name:
            chem_re = re.compile(
                    "JL NN Chemical DL([0-9]+) \([0-9]+,[0-9]+,[0-9]+\) v[0-9]+")
            chem_dl_length = int(chem_re.findall(pybrain_network.name)[0])

            network_params_len = len(pybrain_network.params) + chem_dl_length * 3

        else:
            network_params_len = len(pybrain_network.params)

        # Query the database to get the trail information.
        (data_matrix,
        db_trail_name,
        init_rot) = pgdb.getTrailData(args.trail)

        # Calculate the maximum amount of food for potential later comparison.
        MAX_FOOD = np.bincount(np.array(data_matrix).flatten())[1]

        for curr_repeat in range(0, args.repeat):
            repeat_start_time = datetime.datetime.now()

            gens_stat_list = [None] * args.generations
            # Create an empty array to store the launches for SCOOP.
            launches = []

            # Prepare the array for storing hall of fame.
            hof_array = np.zeros((args.generations,
                network_params_len))

            toolbox = base.Toolbox()
            toolbox.register("map", scoop.futures.map)
            toolbox.register("attr_float", random.uniform,
                a=args.weight_min, b=args.weight_max)
            toolbox.register("individual", tools.initRepeat, creator.Individual,
                toolbox.attr_float, n=network_params_len)
            toolbox.register("population", tools.initRepeat, list,
                toolbox.individual)

            an_temp = AgentNetwork()
            an_temp.readNetworkFromFile(temp_f_network)
            at_temp = AgentTrail()
            at_temp.readTrailInstant(data_matrix, db_trail_name, init_rot)

            toolbox.register("evaluate", __singleMazeTask, moves=args.moves,
                network=pickle.dumps(an_temp), trail=pickle.dumps(at_temp))
            toolbox.register("mate", tools.cxTwoPoint)
            if args.mutate_type == 1:
                toolbox.register("mutate",
                    tools.mutFlipBit,
                    indpb=P_BIT_MUTATE)
            elif args.mutate_type == 2:
                toolbox.register("mutate",
                    mutUniformFloat,
                    low=args.weight_min,
                    up=args.weight_max,
                    indpb=P_BIT_MUTATE)
            elif args.mutate_type == 3:
                toolbox.register("mutate",
                    mutUniformFloat,
                    low=args.weight_min,
                    up=args.weight_max,
                    indpb=0.30)
            elif args.mutate_type == 4:
                toolbox.register("mutate",
                    mutUniformFloat,
                    low=args.weight_min,
                    up=args.weight_max,
                    indpb=0.10)
            elif args.mutate_type == 5:
                toolbox.register("mutate",
                    tools.mutGaussian,
                    mu=0,
                    indpb=0.05)
            else:
                print "ERROR: Please selct a valid mutate type!"
                sys.exit(10)

            if args.selection == 1:
                # Selection is tournment. Must use argument from user.
                toolbox.register("select", tools.selTournament,
                    tournsize=args.tournament_size)
            elif args.selection == 2:
                toolbox.register("select", tools.selRoulette)
            elif args.selection == 3:
                toolbox.register("select", tools.selNSGA2)
            elif args.selection == 4:
                toolbox.register("select", tools.selSPEA2)
            elif args.selection == 5:
                toolbox.register("select", tools.selRandom)
            elif args.selection == 6:
                toolbox.register("select", tools.selBest)
            elif args.selection == 7:
                toolbox.register("select", tools.selWorst)
            elif args.selection == 8:
                toolbox.register("select", tools.selTournamentDCD)
            else:
                print "ERROR: Something is wrong with selection method!"
                sys.exit(10)

            # Start a new evolution
            population = toolbox.population(n=args.population)
            halloffame = tools.HallOfFame(maxsize=1)
            food_stats = tools.Statistics(key=lambda ind: ind.fitness.values[0])
            move_stats = tools.Statistics(key=lambda ind: ind.fitness.values[1])
            mstats     = tools.MultiStatistics(food=food_stats, moves=move_stats)

            mstats.register("min", np.min)
            mstats.register("avg", np.mean)
            mstats.register("max", np.max)
            mstats.register("std", np.std)
            mstats.register("mode", mode)

            # Record the start of this run.
            log_time = datetime.datetime.now()

            # Evaluate and record the first generation here.
            invalid_ind = [ind for ind in population if not ind.fitness.valid]
            fitnesses = toolbox.map(toolbox.evaluate, invalid_ind)
            for ind, fit in zip(invalid_ind, fitnesses):
                ind.fitness.values = fit

            # Determine the current generations statistics.
            record = mstats.compile(population)

            if args.debug:
                print "DEBUG: Completed generation 1"

            hof_indiv = np.array(tools.selBest(population, k=1)[0])
            hof_array[0] = hof_indiv

            # Add the hall of fame to launches.
            launches.append(
                scoop.futures.submit(__singleMazeTask,
                hof_indiv,
                args.moves,
                pickle.dumps(an_temp),
                pickle.dumps(at_temp),
                1,
                record)
            )

            # Keep track of the average food history.
            mean_food_history = []
            smart_term_msg = ""

            # Begin the generational process
            for gen in range(2, args.generations + 1):
                # Vary the pool of individuals
                if args.variation in [1]:
                    offspring = algorithms.varAnd(population, toolbox,
                        cxpb=args.prob_crossover, mutpb=args.prob_mutate)
                elif args.variation in [2, 3, 4]:
                    offspring = algorithms.varOr(population, toolbox,
                        lambda_=args.lambda_,
                        cxpb=args.prob_crossover, mutpb=args.prob_mutate)
                elif args.variation in [5]:
                    # Take and modify the varAnd from DEAP.
                    offspring = [toolbox.clone(ind) for ind in population]

                    # Apply crossover and mutation on the offspring
                    for i in range(1, len(offspring), 2):
                        if random.random() < args.prob_crossover:
                            offspring[i-1], offspring[i] = toolbox.mate(
                                offspring[i-1], offspring[i])
                            del (offspring[i-1].fitness.values,
                                offspring[i].fitness.values)

                    for i in range(len(offspring)):
                        if random.random() < args.prob_mutate:
                            if args.mutate_type in [5]:
                                offspring[i], = toolbox.mutate(
                                    offspring[i],
                                    sigma=np.std(offspring[i]))
                            else:
                                offspring[i], = toolbox.mutate(
                                    offspring[i], offspring[i])
                            del offspring[i].fitness.values

                else:
                    print ("ERROR: Something is really wrong! " +
                        "Reached an invalid variation type!")
                    sys.exit(5)

                # Evaluate the individuals with an invalid fitness
                invalid_ind = [ind for ind in offspring if not ind.fitness.valid]
                fitnesses = toolbox.map(toolbox.evaluate, invalid_ind)
                for ind, fit in zip(invalid_ind, fitnesses):
                    ind.fitness.values = fit

                # Update the hall of fame with the generated individuals
                if halloffame is not None:
                    halloffame.update(offspring)

                # Replace the current population by the offspring
                if args.variation in [2, 3]:
                    population[:] = toolbox.select(offspring, args.population)
                elif args.variation in [4, 5]:
                    population[:] = toolbox.select(offspring + population,
                        args.population)
                else:
                    population[:] = offspring

                # Determine the current generations statistics.
                record = mstats.compile(population)

                if args.debug:
                    print "DEBUG: Completed generation {0}.".format(gen)
                    print (
                        "DEBUG: Food (Min / Max / Avg / Std / Mode): "
                              "{0} / {1} / {2} / {3} / {4}".format(
                                record["food"]["min"],
                                record["food"]["max"],
                                record["food"]["avg"],
                                record["food"]["std"],
                                record["food"]["mode"]))
                    print (
                        "DEBUG: Moves (Min / Max / Avg / Std / Mode): "
                              "{0} / {1} / {2} / {3} / {4}".format(
                                record["moves"]["min"],
                                record["moves"]["max"],
                                record["moves"]["avg"],
                                record["moves"]["std"],
                                record["moves"]["mode"]))

                hof_indiv = np.array(tools.selBest(population, k=1)[0])

                hof_array[gen - 1] = hof_indiv

                # Add the hall of fame to launches.
                launches.append(
                    scoop.futures.submit(__singleMazeTask,
                    hof_indiv,
                    args.moves,
                    pickle.dumps(an_temp),
                    pickle.dumps(at_temp),
                    gen,
                    record)
                )

                # Update the mean food history.
                mean_food_history.append(record["food"]["avg"])

                # Update the progress bar
                if pbar:
                    current_overall_gen += 1
                    pbar.update(current_overall_gen)

                # Check if it is time to quit if variation is 3. Critera are
                # any of the following:
                #  1) All food has been collected.
                #  2) Mean has not changed for args.mean_check_length
                #  3) Run out of generations (happens without this if)
                if args.variation in [3, 4, 5] and not args.no_early_quit:
                    if (int(record["food"]["max"]) == int(MAX_FOOD)):
                        smart_term_msg = ("Exited at generation {0} because "
                            "all food was consumed.").format(gen)
                        break
                    elif(len(mean_food_history) >= args.mean_check_length and
                        (np.std(mean_food_history[-args.mean_check_length:])
                            < 0.1)):
                        smart_term_msg = ("Exited at generation {0} because "
                            "mean check length has been met.").format(gen)
                        break


            # Evaluate the Hall of Fame individual for each generation here
            # in a multithreaded fashion to speed things up.
            for this_future in scoop.futures.as_completed(launches):
                result = this_future.result()
                gens_stat_list[result[0] - 1] = result[1]

            # Remove all of the None values from the gen_stat_list
            gens_stat_list = filter(lambda a: a is not None, gens_stat_list)

            # Record the statistics on this run.
            run_info = {}

            run_info["trails_id"]    = args.trail
            run_info["networks_id"]  = curr_network
            run_info["selection_id"] = args.selection
            run_info["mutate_id"]    = args.mutate_type
            run_info["host_type_id"] = 1 # Only one host type for now.
            run_info["variations_id"] = args.variation
            run_info["run_date"]     = log_time
            run_info["hostname"]     = socket.getfqdn()
            run_info["generations"]  = args.generations
            run_info["population"]   = args.population
            run_info["moves_limit"]  = args.moves
            run_info["sel_tourn_size"]  = args.tournament_size
            if args.variation in [1, 5]:
                run_info["lambda"] = 0
            else:
                run_info["lambda"] = args.lambda_
            run_info["p_mutate"]     = args.prob_mutate
            run_info["p_crossover"]  = args.prob_crossover
            run_info["weight_min"]   = args.weight_min
            run_info["weight_max"]   = args.weight_max
            run_info["debug"]        = args.debug
            # Version for if anything changes in python GA Algorithm
            run_info["algorithm_ver"] = 2
            run_info["mean_check_length"] = args.mean_check_length
            run_info["runtime"]      = (datetime.datetime.now() -
                repeat_start_time)

            if not args.disable_db:
                run_id = pgdb.recordRun(run_info, gens_stat_list)
            else:
                run_id = -1

            if args.script_mode:
                if run_id > 0:
                    print (
                        "Completed repeat {0} with run ID {1}. {2}".format(
                            curr_repeat,
                            run_id,
                            smart_term_msg
                        ))
                else:
                    print (
                        "Completed repeat {0} without logging to DB. {1}".format(
                            curr_repeat,
                            smart_term_msg
                        ))

        # Delete the temporary file
        os.remove(temp_f_network)

    # Calculate and display the total runtime
    if pbar:
        pbar.finish()

    total_time_s = time.time() - run_date

    if run_id > 0:
        print "Final Run ID {0} completed all runs in {1}. {2}".format(
                run_id,
                time.strftime('%H:%M:%S', time.gmtime(total_time_s)),
                smart_term_msg)
    else:
        print "UNLOGGED Run completed in {0}. {1}".format(
                time.strftime('%H:%M:%S', time.gmtime(total_time_s)),
                smart_term_msg)
Esempio n. 45
0
def eaMuPlusLambda1(population,
                    toolbox,
                    mu,
                    lambda_,
                    cxpb,
                    mutpb,
                    ngen,
                    stats=None,
                    halloffame=None,
                    verbose=__debug__):

    global phase
    global snakeList
    global snakeList1
    global succFlag

    succFlag = False

    logbook = tools.Logbook()
    logbook.header = ['gen', 'nevals'] + (stats.fields if stats else [])

    # Evaluate the individuals with an invalid fitness
    #invalid_ind = [ind for ind in population if not ind.fitness.valid]
    fitnesses = toolbox.map(toolbox.evaluate, population)

    for ind, fit in zip(population, fitnesses):

        ind.fitness.values = fit
        #print(fit, ind.fitness.values)

    if halloffame is not None:
        halloffame.update(population)

    record = stats.compile(population) if stats is not None else {}
    logbook.record(gen=0,
                   nevals=len(population),
                   hof=0.0,
                   besthofgen=0,
                   **record)
    if verbose:
        print(logbook.stream)
        #print(record)

    k = 0.0
    kk = 0

    snakeList1[:] = []

    # Begin the generational process
    for gen in range(1, ngen + 1):
        # Vary the population
        offspring = algorithms.varOr(population, toolbox, lambda_, cxpb, mutpb)

        # Evaluate the individuals with an invalid fitness
        #invalid_ind = [ind for ind in offspring if not ind.fitness.valid]
        fitnesses = toolbox.map(toolbox.evaluate, offspring)
        for ind, fit in zip(offspring, fitnesses):
            ind.fitness.values = fit

        # Update the hall of fame with the generated individuals
        if halloffame is not None:
            halloffame.update(offspring)

        # Select the next generation population
        population[:] = toolbox.select(population + offspring, mu)

        # Update the statistics with the new population
        record = stats.compile(population) if stats is not None else {}
        logbook.record(gen=gen, nevals=len([]), hof=k, besthofgen=kk, **record)

        if record['avgbest'] > k:
            k = record['avgbest']
            kk = gen

        if gen - kk > 10:
            return population, logbook
        if verbose:
            print(logbook.stream)

    return population, logbook
Esempio n. 46
0
def ea_mu_plus_lambda(population,
                      toolbox,
                      checkpoint,
                      mu,
                      lambda_,
                      cxpb,
                      mutpb,
                      ngen,
                      stats=None,
                      halloffame=None,
                      verbose=__debug__):

    if checkpoint:
        # A file name has been give, then load the data from the file
        with open(checkpoint, "rb") as cp_file:
            cp = pickle.load(cp_file)

        population = cp["population"]
        start_gen = cp["generation"] + 1
        halloffame = cp["halloffame"]
        logbook = cp["logbook"]
        random.setstate(cp["rndstate"])
        best_specimens = cp["bestspecimens"]

        print(logbook)

    else:
        # start a new evolution since no cp_file was given
        # population = toolbox.population(n=36)
        start_gen = 1
        # halloffame = tools.HallOfFame(maxsize=1)
        logbook = tools.Logbook()
        best_specimens = []

    logbook.header = ['gen', 'nevals'] + (stats.fields if stats else [])

    # Evaluate the individuals with an invalid fitness
    invalid_ind = [ind for ind in population if not ind.fitness.valid]
    fitnesses = toolbox.map(toolbox.evaluate, invalid_ind)
    for ind, fit in zip(invalid_ind, fitnesses):
        ind.fitness.values = fit

    if halloffame is not None:
        halloffame.update(population)

    record = stats.compile(population) if stats is not None else {}
    logbook.record(gen=0, nevals=len(invalid_ind), **record)
    if verbose:
        print(logbook.stream)

    # Begin the generational process
    for gen in range(start_gen, ngen + 1):
        # clear the directory of all sim files
        clear_directory()

        # Vary the population
        offspring = algorithms.varOr(population, toolbox, lambda_, cxpb, mutpb)

        # Evaluate the individuals with an invalid fitness
        invalid_ind = [ind for ind in offspring if not ind.fitness.valid]
        fitnesses = toolbox.map(toolbox.evaluate, invalid_ind)
        for ind, fit in zip(invalid_ind, fitnesses):
            ind.fitness.values = fit

        # Update the hall of fame with the generated individuals
        if halloffame is not None:
            halloffame.update(offspring)

        # Select the next generation population
        population[:] = toolbox.select(population + offspring, mu)

        # Append the best solution from this gen to the best specimens
        # array
        #
        best_specimens.append(tools.selBest(population, k=1)[0])

        # Update the statistics with the new population
        record = stats.compile(population) if stats is not None else {}
        logbook.record(gen=gen, nevals=len(invalid_ind), **record)
        if verbose:
            print(logbook.stream)

        if gen % FREQ == 0:
            # fill the dictionary
            cp = dict(population=population,
                      generation=gen,
                      halloffame=halloffame,
                      logbook=logbook,
                      rndstate=random.getstate(),
                      bestspecimens=best_specimens)

            with open(CHECK_POINT, "wb") as cp_file:
                pickle.dump(cp, cp_file)

    return population, logbook