def _smithchart_recalc(self, new=False):
     for sset in self.__ssets:
         dname = self.__sset_dname[sset]
         fcol = self.__sset_fdcol[sset]
         rcol = self.__sset_rdcol[sset]
         icol = self.__sset_idcol[sset]
         fdata = self.__sset_fdata[sset]
         rdata = self.__sset_rdata[sset]
         idata = self.__sset_idata[sset]
         dsmith = Data()
         dsmith.read_inline(fcol, fdata, rcol, rdata, icol, idata)
         # if input data is admittance or impedance, convert to s-parameter
         if new:
             self.add_curve(dsmith, rcol, icol, dname=dname)
         else:
             curve = "%s_:_%s_%s_vs_%s" % (dname, rcol, icol, fcol)
             self._curve_xdata[curve] = dsmith.get(rcol)
             self._curve_ydata[curve] = dsmith.get(icol)
Esempio n. 2
0
from decida.Data import Data
import numpy as np
Iin_avg_array = []
stop_vo_array = []
final_vo_array = []
tend = 550e-6
for i in range(1):
    input_file = "tb.tr" + str(i)
    d = Data()
    d.read_hspice(input_file)
    #d.names()
    time = d.get('TIME')
    vout = d.get('v(vout))')
    Iin = d.get('i(vvin))')
    stop_recycle = d.get('v(stop_recycle))')
    zcd = d.get('v(zcd))')
    Iin_avg = np.sum((time[1:] - time[:-1]) * (Iin[1:] + Iin[:-1]) / 2) / tend
    Iin_avg_array.append(Iin_avg)
    for j in range(len(time)):
        if time[j] > 1e-6 and stop_recycle[j] > 0.6 and zcd[j] > 0.6:
            stop_vo_array.append(vout[j])
            break
    final_vo_array.append(vout[-1])
output_filename = "extracted_result.txt"
with open(output_filename, "w") as f:
    f.write("Iin_avg\tstop_vo\tfinal_vo\n")
    for i in range(len(Iin_avg_array)):
        f.write("%e\t%f\t%f\n" %
                (Iin_avg_array[i], stop_vo_array[i], final_vo_array[i]))

f.close()