def evaluate(model, data_loader, tokenizer, rouge1, rouge2, attn_id, tgt_type_id, args): model.eval() vocab = tokenizer.vocab eos_id = vocab[tokenizer.sep_token] sos_id = vocab[tokenizer.cls_token] pad_id = vocab[tokenizer.pad_token] unk_id = vocab[tokenizer.unk_token] vocab_size = len(vocab) evaluated_sentences_ids = [] reference_sentences_ids = [] logger.info("Evaluating...") for data in tqdm(data_loader): (src_ids, src_tids, src_pids, _, _, _, _, _, _, _, _, raw_tgt_labels) = data # never use target when infer # Use greedy_search_infilling or beam_search_infilling to get predictions output_ids = beam_search_infilling( model, src_ids, src_tids, eos_id=eos_id, sos_id=sos_id, attn_id=attn_id, pad_id=pad_id, unk_id=unk_id, vocab_size=vocab_size, max_decode_len=args.max_decode_len, max_encode_len=args.max_encode_len, beam_width=args.beam_width, length_penalty=args.length_penalty, tgt_type_id=tgt_type_id) for ids in output_ids.tolist(): if eos_id in ids: ids = ids[:ids.index(eos_id)] evaluated_sentences_ids.append(ids) for ids in raw_tgt_labels.numpy().tolist(): ids = ids[:ids.index(eos_id)] reference_sentences_ids.append(ids) score1 = rouge1.score(evaluated_sentences_ids, reference_sentences_ids) score2 = rouge2.score(evaluated_sentences_ids, reference_sentences_ids) logger.info("Rouge-1: %.5f ,Rouge-2: %.5f" % (score1 * 100, score2 * 100)) evaluated_sentences = [] reference_sentences = [] for ids in reference_sentences_ids[:5]: reference_sentences.append(''.join( map(post_process, vocab.to_tokens(ids)))) for ids in evaluated_sentences_ids[:5]: evaluated_sentences.append(''.join( map(post_process, vocab.to_tokens(ids)))) logger.debug(reference_sentences) logger.debug(evaluated_sentences) model.train()
def predict(): paddle.set_device("gpu" if args.use_gpu else "cpu") model = ErnieForGeneration.from_pretrained(args.model_name_or_path) if "ernie-tiny" in args.model_name_or_path: tokenizer = ErnieTinyTokenizer.from_pretrained(args.model_name_or_path) elif "ernie" in args.model_name_or_path: tokenizer = ErnieTokenizer.from_pretrained(args.model_name_or_path) elif "roberta" in args.model_name_or_path or "rbt" in args.model_name_or_path: tokenizer = RobertaTokenizer.from_pretrained(args.model_name_or_path) elif "electra" in args.model_name_or_path: tokenizer = ElectraTokenizer.from_pretrained(args.model_name_or_path) else: tokenizer = BertTokenizer.from_pretrained(args.model_name_or_path) dev_dataset = Poetry.get_datasets(['dev']) attn_id = tokenizer.vocab[ '[ATTN]'] if '[ATTN]' in tokenizer.vocab else tokenizer.vocab['[MASK]'] tgt_type_id = model.sent_emb.weight.shape[0] - 1 trans_func = convert_example(tokenizer=tokenizer, attn_id=attn_id, tgt_type_id=tgt_type_id, max_encode_len=args.max_encode_len, max_decode_len=args.max_decode_len) batchify_fn = lambda samples, fn=Tuple( Pad(axis=0, pad_val=tokenizer.pad_token_id), # src_ids Pad(axis=0, pad_val=tokenizer.pad_token_id), # src_pids Pad(axis=0, pad_val=tokenizer.pad_token_id), # src_sids Pad(axis=0, pad_val=tokenizer.pad_token_id), # tgt_ids Pad(axis=0, pad_val=tokenizer.pad_token_id), # tgt_pids Pad(axis=0, pad_val=tokenizer.pad_token_id), # tgt_sids Pad(axis=0, pad_val=tokenizer.pad_token_id), # attn_ids Pad(axis=0, pad_val=tokenizer.pad_token_id), # tgt_labels ): after_padding(fn(samples)) dev_dataset = dev_dataset.apply(trans_func, lazy=True) test_batch_sampler = paddle.io.BatchSampler(dev_dataset, batch_size=args.batch_size, shuffle=False) data_loader = DataLoader(dataset=dev_dataset, batch_sampler=test_batch_sampler, collate_fn=batchify_fn, num_workers=0, return_list=True) if args.init_checkpoint: model_state = paddle.load(args.init_checkpoint) model.set_state_dict(model_state) model.eval() vocab = tokenizer.vocab eos_id = vocab[tokenizer.sep_token] sos_id = vocab[tokenizer.cls_token] pad_id = vocab[tokenizer.pad_token] unk_id = vocab[tokenizer.unk_token] vocab_size = len(vocab) evaluated_sentences = [] evaluated_sentences_ids = [] logger.info("Predicting...") for data in data_loader: (src_ids, src_sids, src_pids, _, _, _, _, _, _, _, _, raw_tgt_labels) = data # never use target when infer # Use greedy_search_infilling or beam_search_infilling to get predictions output_ids = beam_search_infilling(model, src_ids, src_sids, eos_id=eos_id, sos_id=sos_id, attn_id=attn_id, pad_id=pad_id, unk_id=unk_id, vocab_size=vocab_size, max_decode_len=args.max_decode_len, max_encode_len=args.max_encode_len, beam_width=args.beam_width, length_penalty=args.length_penalty, tgt_type_id=tgt_type_id) for source_ids, target_ids, predict_ids in zip( src_ids.numpy().tolist(), raw_tgt_labels.numpy().tolist(), output_ids.tolist()): if eos_id in predict_ids: predict_ids = predict_ids[:predict_ids.index(eos_id)] source_sentence = ''.join( map(post_process, vocab.to_tokens(source_ids[1:source_ids.index(eos_id)]))) tgt_sentence = ''.join( map(post_process, vocab.to_tokens(target_ids[1:target_ids.index(eos_id)]))) predict_ids = ''.join( map(post_process, vocab.to_tokens(predict_ids))) print("source :%s\ntarget :%s\npredict:%s\n" % (source_sentence, tgt_sentence, predict_ids))
def evaluate(): paddle.set_device("gpu" if args.use_gpu else "cpu") model = ErnieForGeneration.from_pretrained(args.model_name_or_path) if "ernie-tiny" in args.model_name_or_path: tokenizer = ErnieTinyTokenizer.from_pretrained(args.model_name_or_path) elif "ernie" in args.model_name_or_path: tokenizer = ErnieTokenizer.from_pretrained(args.model_name_or_path) elif "roberta" in args.model_name_or_path or "rbt" in args.model_name_or_path: tokenizer = RobertaTokenizer.from_pretrained(args.model_name_or_path) elif "electra" in args.model_name_or_path: tokenizer = ElectraTokenizer.from_pretrained(args.model_name_or_path) else: tokenizer = BertTokenizer.from_pretrained(args.model_name_or_path) dev_dataset = Poetry.get_datasets(['dev']) attn_id = tokenizer.vocab[ '[ATTN]'] if '[ATTN]' in tokenizer.vocab else tokenizer.vocab['[MASK]'] tgt_type_id = model.sent_emb.weight.shape[0] - 1 trans_func = convert_example(tokenizer=tokenizer, attn_id=attn_id, tgt_type_id=tgt_type_id, max_encode_len=args.max_encode_len, max_decode_len=args.max_decode_len) batchify_fn = lambda samples, fn=Tuple( Pad(axis=0, pad_val=tokenizer.pad_token_id), # src_ids Pad(axis=0, pad_val=tokenizer.pad_token_id), # src_pids Pad(axis=0, pad_val=tokenizer.pad_token_id), # src_sids Pad(axis=0, pad_val=tokenizer.pad_token_id), # tgt_ids Pad(axis=0, pad_val=tokenizer.pad_token_id), # tgt_pids Pad(axis=0, pad_val=tokenizer.pad_token_id), # tgt_sids Pad(axis=0, pad_val=tokenizer.pad_token_id), # attn_ids Pad(axis=0, pad_val=tokenizer.pad_token_id), # tgt_labels ): after_padding(fn(samples)) dev_dataset = dev_dataset.apply(trans_func, lazy=True) dev_batch_sampler = paddle.io.BatchSampler(dev_dataset, batch_size=args.batch_size, shuffle=False) data_loader = DataLoader(dataset=dev_dataset, batch_sampler=dev_batch_sampler, collate_fn=batchify_fn, num_workers=0, return_list=True) rouge1 = Rouge1() rouge2 = Rouge2() if args.init_checkpoint: model_state = paddle.load(args.init_checkpoint) model.set_state_dict(model_state) model.eval() vocab = tokenizer.vocab eos_id = vocab[tokenizer.sep_token] sos_id = vocab[tokenizer.cls_token] pad_id = vocab[tokenizer.pad_token] unk_id = vocab[tokenizer.unk_token] vocab_size = len(vocab) evaluated_sentences_ids = [] reference_sentences_ids = [] logger.info("Evaluating...") for data in tqdm(data_loader): (src_ids, src_sids, src_pids, _, _, _, _, _, _, _, _, raw_tgt_labels) = data # never use target when infer # Use greedy_search_infilling or beam_search_infilling to get predictions output_ids = beam_search_infilling(model, src_ids, src_sids, eos_id=eos_id, sos_id=sos_id, attn_id=attn_id, pad_id=pad_id, unk_id=unk_id, vocab_size=vocab_size, max_decode_len=args.max_decode_len, max_encode_len=args.max_encode_len, beam_width=args.beam_width, length_penalty=args.length_penalty, tgt_type_id=tgt_type_id) for ids in output_ids.tolist(): if eos_id in ids: ids = ids[:ids.index(eos_id)] evaluated_sentences_ids.append(ids) for ids in raw_tgt_labels.numpy().tolist(): ids = ids[:ids.index(eos_id)] reference_sentences_ids.append(ids) score1 = rouge1.score(evaluated_sentences_ids, reference_sentences_ids) score2 = rouge2.score(evaluated_sentences_ids, reference_sentences_ids) logger.info("Rouge-1: %.5f ,Rouge-2: %.5f" % (score1 * 100, score2 * 100))