Esempio n. 1
0
def main(args):
    # Make a directory to save models
    if not os.path.exists(args.model_path):
        os.makedirs(args.model_path)

    # Preprocess the RRM data
    vocab, df_aligned = preprocess(preprocessed=args.preprocessed,
                                   RRM_path=args.aligned_RRM_path,
                                   output_path=args.processed_RRM_path,
                                   sep=args.sep)
    df_aligned = train_test_split(df_aligned)
    with open(os.path.join(args.model_path, 'vocab.pkl'), 'wb') as f:
        pickle.dump(vocab, f)

    # Prepare the training and validation sets
    train_index = pd.read_csv('../data/train_index.csv', header=None).iloc[:,
                                                                           0]
    train_loader = RRM_Sequence(df_aligned.loc[train_index, :], vocab)
    train_loader = DataLoader(train_loader,
                              batch_size=args.batch_size,
                              shuffle=True,
                              collate_fn=collate_fn)

    val_index = pd.read_csv('../data/val_index.csv', header=None).iloc[:, 0]
    val_loader = RRM_Sequence(df_aligned.loc[val_index, :], vocab)
    val_loader = DataLoader(val_loader,
                            batch_size=args.batch_size,
                            shuffle=True,
                            collate_fn=collate_fn)

    # Define the models
    encoder = ResNetEncoder(df_aligned.shape[1], len(vocab), args.embed_size)
    decoder = DecoderRNN(args.embed_size, args.hidden_size, len(vocab),
                         args.num_layers)

    # Use CUDA if available
    if torch.cuda.is_available():
        encoder.cuda()
        decoder.cuda()

    # Define the loss and optimizer
    criterion = nn.CrossEntropyLoss()
    params = list(decoder.parameters()) + list(encoder.parameters())
    optimizer = torch.optim.Adam(params, lr=args.learning_rate)

    # Train the models
    total_step = len(train_loader)
    val_loss_history = []
    for epoch_num, epoch in enumerate(range(args.num_epochs)):
        for batch_idx, (names, rrms_aligned, rrms_unaligned,
                        lengths) in enumerate(train_loader):
            rrms_aligned = to_var(rrms_aligned)
            rrms_unaligned = to_var(rrms_unaligned)
            targets = pack_padded_sequence(rrms_unaligned,
                                           lengths,
                                           batch_first=True)[0]

            # Forward, backward, and optimize
            decoder.zero_grad()
            encoder.zero_grad()
            features = encoder(rrms_aligned)
            outputs = decoder(features, rrms_unaligned, lengths)
            loss = criterion(outputs, targets)
            loss.backward()
            optimizer.step()

            # Print log info
            if (batch_idx + 1) % args.log_step == 0:
                val_loss = validate(val_loader, encoder, decoder, criterion)
                val_loss_history.append(val_loss)
                print(
                    'Epoch [%d/%d], Step [%d/%d], Training Loss: %.4f, Validation loss: %.4f'
                    % (epoch + 1, args.num_epochs, batch_idx + 1, total_step,
                       loss.data[0], val_loss))
                stop = early_stop(val_loss_history)
                if stop:
                    print(
                        '=== Early stopping === Validation loss not improving significantly ==='
                    )
                    torch.save(
                        decoder.state_dict(),
                        os.path.join(
                            args.model_path,
                            'decoder-anneal%s-%dcolumns-%d-%d.pkl' %
                            (args.learning_rate_annealing, df_aligned.shape[1],
                             epoch + 1, batch_idx + 1)))
                    torch.save(
                        encoder.state_dict(),
                        os.path.join(
                            args.model_path,
                            'encoder-anneal%s-%dcolumns-%d-%d.pkl' %
                            (args.learning_rate_annealing, df_aligned.shape[1],
                             epoch + 1, batch_idx + 1)))
                    break

            # Save the models
            if (batch_idx + 1) % args.save_step == 0:
                torch.save(
                    decoder.state_dict(),
                    os.path.join(
                        args.model_path,
                        'decoder-anneal%s-%dcolumns-%d-%d.pkl' %
                        (args.learning_rate_annealing, df_aligned.shape[1],
                         epoch + 1, batch_idx + 1)))
                torch.save(
                    encoder.state_dict(),
                    os.path.join(
                        args.model_path,
                        'encoder-anneal%s-%dcolumns-%d-%d.pkl' %
                        (args.learning_rate_annealing, df_aligned.shape[1],
                         epoch + 1, batch_idx + 1)))

        # Decay the learning rate if specified
        if args.learning_rate_annealing:
            adjust_learning_rate(optimizer, epoch + 1)

        if stop:
            break
Esempio n. 2
0
class CorrelationNetwork(Sequence2SequenceNetwork):
    def __init__(self, config):
        self.init_writer()
        self.load_configuration(config)
        self.load_vocabulary()
        self.prepare_data()
        self.build_model()
        self.load_pretrained_model()
        self.train_model()
        self.save_model(self.n_epochs)
        self.evaluate_all()
        self.close_writer()

    def build_model(self):
        if self.use_embeddings:
            self.embedding = nn.Embedding.from_pretrained(self.embedding_wts)
        else:
            self.embedding = nn.Embedding(self.vocab.n_words,
                                          self.embedding_dim)
        self.encoders = []
        self.encoder_optimizers = []

        # Note: No embeddings used in the encoders
        for m in ['v', 's']:
            encoder = EncoderRNN(self.enc_input_dim[m], self.hidden_size,
                                 self.enc_n_layers, self.dropout, self.unit,
                                 m).to(self.device)
            encoder_optimizer = optim.Adam(encoder.parameters(), lr=self.lr)

            if self.modality == 'ss-vv':
                checkpoint = torch.load(self.pretrained_modality[m],
                                        map_location=self.device)
                encoder.load_state_dict(checkpoint['en'])
                encoder_optimizer.load_state_dict(checkpoint['en_op'])
            self.encoders.append(encoder)
            self.encoder_optimizers.append(encoder_optimizer)
        self.decoder = DecoderRNN(self.attn_model, self.embedding_dim,
                                  self.hidden_size, self.vocab.n_words,
                                  self.unit, self.dec_n_layers, self.dropout,
                                  self.embedding).to(self.device)
        text_checkpoint = torch.load(self.pretrained_modality['t'],
                                     map_location=self.device)
        self.decoder.load_state_dict(text_checkpoint['de'])
        self.project_factor = self.encoders[0].project_factor
        self.latent2hidden = nn.Linear(self.latent_dim, self.hidden_size *
                                       self.project_factor).to(self.device)
        self.epoch = 0

    def train_model(self):
        best_score = 1e-200
        plot_losses = []
        print_loss_total = 0  # Reset every epoch

        saving_skipped = 0
        for epoch in range(self.epoch, self.n_epochs):
            random.shuffle(self.pairs)
            for iter in range(0, self.n_iters, self.batch_size):
                training_batch = batch2TrainData(
                    self.vocab, self.pairs[iter:iter + self.batch_size],
                    self.modality)
                # Extract fields from batch
                vid_vec, lengths, speech_vec, tar_lengths = training_batch

                # Run a training iteration with the current batch
                loss = self.train(vid_vec, lengths, speech_vec, tar_lengths,
                                  iter)
                self.writer.add_scalar('{}loss'.format(self.data_dir), loss,
                                       iter)

                print_loss_total += loss

            print_loss_avg = print_loss_total * self.batch_size / self.n_iters
            print_loss_total = 0
            print('Epoch: [{}/{}] Loss: {:.4f}'.format(epoch, self.n_epochs,
                                                       print_loss_avg))

            # evaluate and save the model
            curr_score = self.evaluate_all()
            self.writer.add_scalar('{}bleu_score'.format(self.data_dir),
                                   curr_score)

            if curr_score > best_score:
                saving_skipped = 0
                best_score = curr_score
                self.save_model(epoch)

            saving_skipped += 1
            if self.use_scheduler and saving_skipped > 3:
                saving_skipped = 0
                new_lr = self.lr * 0.5
                print('Entered the dungeon...')
                if new_lr > self.lr_lower_bound:  # lower bound on lr
                    self.lr = new_lr
                    print('lr decreased to => {}'.format(self.lr))

    def train(self, input_variable, lengths, target_variable, tar_lengths,
              iter):
        for i, _ in enumerate(self.encoders):
            self.encoders[i].train()
            self.encoders[i].zero_grad()
        input_variable = input_variable.to(self.device)
        lengths = lengths.to(self.device)
        target_variable = target_variable.to(self.device)
        tar_lengths = tar_lengths.to(self.device)

        # Initialize variables
        loss = 0
        print_losses = []
        n_totals = 0

        # Forward pass through encoder
        enc_out_1, enc_hidden_1 = self.encoders[0](input_variable, lengths)
        enc_out_2, enc_hidden_2 = self.encoders[1](target_variable,
                                                   tar_lengths)

        if self.unit == 'gru':
            latent_1 = enc_hidden_1
            latent_2 = enc_hidden_2
        else:  # lstm
            (latent_1, cs_1) = enc_hidden_1
            (latent_2, cs_2) = enc_hidden_2

        loss = self.mean_square_error(latent_1, latent_2)
        loss.backward()

        # Clip gradients: gradients are modified in place
        for i, _ in enumerate(self.encoders):
            torch.nn.utils.clip_grad_norm_(self.encoders[i].parameters(),
                                           self.clip)
            self.encoder_optimizers[i].step()
        return loss.item()

    def mean_square_error(self, inp, target):
        criterion = nn.MSELoss()
        return criterion(inp, target)

    def save_model(self, epoch):
        directory = '{}'.format(self.save_dir)
        if not os.path.exists(directory):
            os.makedirs(directory)
        torch.save(
            {
                'epoch': epoch,
                'en_1': self.encoders[0].state_dict(),
                'en_2': self.encoders[1].state_dict(),
                'en_op1': self.encoder_optimizers[0].state_dict(),
                'en_op2': self.encoder_optimizers[1].state_dict(),
                'de': self.decoder.state_dict()
            }, '{}{}-{}-{}.pth'.format(directory, self.modality, self.langs,
                                       epoch))

    def evaluate_all(self):
        for i, _ in enumerate(self.encoders):
            self.encoders[i].eval()
        self.decoder.eval()
        searcher = GreedySearchDecoder(self.encoders[0], self.decoder,
                                       self.latent2hidden, self.device,
                                       self.SOS_TOKEN)
        refs = []
        hyp = []
        for pair in self.test_pairs:
            output_words = self.evaluate(searcher, self.vocab, pair[0])
            if output_words:
                final_output = []
                for x in output_words:
                    if x == '<EOS>':
                        break
                    final_output.append(x)
                refs.append([pair[2].split()])
                hyp.append(final_output)
        bleu_scores = calculateBleuScores(refs, hyp)
        print('Bleu score: {bleu_1} | {bleu_2} | {bleu_3} | {bleu_4}'.format(
            **bleu_scores))
        eg_idx = random.choice(range(len(hyp)))
        print(hyp[eg_idx], refs[eg_idx])
        return bleu_scores['bleu_4']

    def evaluate(self,
                 searcher,
                 vocab,
                 sentence_or_vector,
                 max_length=conf['MAX_LENGTH']):
        with torch.no_grad():
            input_batch, lengths = inputVarVec([sentence_or_vector],
                                               self.modality)
            # Use appropriate device
            input_batch = input_batch.to(self.device)
            lengths = lengths.to(self.device)
            # Decode sentence with searcher
            tokens, scores = searcher(input_batch, lengths, max_length)
            # indexes -> words
            decoded_words = [
                vocab.index2word[token.item()] for token in tokens
            ]
            return decoded_words
Esempio n. 3
0
class Sequence2SequenceNetwork(object):
    def __init__(self, config):
        self.init_writer()
        self.load_configuration(config)
        self.load_vocabulary()
        self.prepare_data()
        self.build_model()
        self.load_pretrained_model()
        self.train_model()
        self.save_model(self.n_epochs)
        self.evaluate_all()
        self.close_writer()

    def init_writer(self):
        self.writer = SummaryWriter()

    def load_configuration(self, config):
        # Load configuration
        self.iter_num = 0
        self.lr = config['lr']
        self.gpu = config['gpu']
        self.unit = config['unit']
        self.clip = config['clip']
        self.beta1 = config['beta1']
        self.beta2 = config['beta2']
        self.langs = config['langs']
        self.fusion = config['fusion']
        self.log_tb = config['log_tb']
        self.epsilon = config['epsilon']
        self.attn_model = config['attn']
        self.dropout = config['dropout']
        self.emb_mode = config['emb_mode']
        self.save_dir = config['save_dir']
        self.data_dir = config['data_dir']
        self.n_epochs = config['n_epochs']
        self.SOS_TOKEN = config['SOS_TOKEN']
        self.EOS_TOKEN = config['EOS_TOKEN']
        self.MAX_LENGTH = config['MAX_LENGTH']
        self.latent_dim = config['latent_dim']
        self.batch_size = config['batch_size']
        self.model_code = config['model_code']
        self.vocab_path = config['vocab_path']
        self.hidden_size = config['hidden_size']
        self.use_cuda = torch.cuda.is_available()
        self.log_tb_every = config['log_tb_every']
        self.enc_n_layers = config['enc_n_layers']
        self.dec_n_layers = config['dec_n_layers']
        self.dec_learning_ratio = config['dec_lr']
        self.bidirectional = config['bidirectional']
        self.enc_input_dim = config['enc_input_dim']
        self.embedding_dim = config['embedding_dim']
        self.use_scheduler = config['use_scheduler']
        self.use_embeddings = config['use_embeddings']
        self.lr_lower_bound = config['lr_lower_bound']
        self.teacher_forcing_ratio = config['tf_ratio']
        self.load_model_name = config['load_model_name']
        self.modality = config[
            'modalities']  # no splitting as it's not multimodal case
        if self.modality in ['ss-vv', 'v-s']:
            self.pretrained_modality = config['pretrained_modality']
        self.generate_word_embeddings = config['generate_word_embeddings']
        self.device = torch.device(
            'cuda:{}'.format(self.gpu) if self.use_cuda else 'cpu')

    def load_vocabulary(self):
        try:
            with open(self.vocab_path, 'rb') as f:
                self.vocab = pickle.load(f)
        except FileNotFoundError as e:  # build vocab if it doesn't exist
            self.vocab = buildVocab()

    def prepare_data(self):
        # Note: The below workaround is used a lot and doing so is okay
        # because this script would only be run for unimodal cases
        self.pairs = prepareData(self.langs, [self.modality])[self.modality]
        num_pairs = len(self.pairs)
        self.pairs = self.pairs[:self.batch_size *
                                (num_pairs // self.batch_size)]
        random.shuffle(self.pairs)
        self.n_iters = len(self.pairs)
        print('\nLoading test data pairs')
        self.test_pairs = prepareData(self.langs, [self.modality],
                                      train=False)[self.modality]
        random.shuffle(self.test_pairs)
        print(random.choice(self.pairs))
        if self.use_embeddings:
            if self.generate_word_embeddings:
                self.embedding_wts = generateWordEmbeddings(
                    self.vocab, self.emb_mode)
            else:
                self.embedding_wts = loadWordEmbeddings(self.emb_mode)

    def build_model(self):
        if self.use_embeddings:
            self.embedding = nn.Embedding.from_pretrained(self.embedding_wts)
        else:
            self.embedding = nn.Embedding(self.vocab.n_words,
                                          self.embedding_dim)

        if self.modality == 't':  # Need embedding only for t2t mode
            self.encoder = EncoderRNN(self.embedding_dim,
                                      self.hidden_size,
                                      self.enc_n_layers,
                                      self.dropout,
                                      self.unit,
                                      self.modality,
                                      self.embedding,
                                      fusion_or_unimodal=True).to(self.device)
        else:
            # Note: no embedding used here
            self.encoder = EncoderRNN(self.enc_input_dim,
                                      self.hidden_size,
                                      self.enc_n_layers,
                                      self.dropout,
                                      self.unit,
                                      self.modality,
                                      fusion_or_unimodal=True).to(self.device)

        self.decoder = DecoderRNN(self.attn_model, self.embedding_dim,
                                  self.hidden_size, self.vocab.n_words,
                                  self.unit, self.dec_n_layers, self.dropout,
                                  self.embedding).to(self.device)
        self.encoder_optimizer = optim.Adam(self.encoder.parameters(),
                                            lr=self.lr)
        self.decoder_optimizer = optim.Adam(self.decoder.parameters(),
                                            lr=self.lr *
                                            self.dec_learning_ratio)

        self.epoch = 0  # define here to add resume training feature
        self.project_factor = self.encoder.project_factor
        self.latent2hidden = nn.Linear(self.latent_dim, self.hidden_size *
                                       self.project_factor).to(self.device)

    def load_pretrained_model(self):
        if self.load_model_name:
            checkpoint = torch.load(self.load_model_name,
                                    map_location=self.device)
            print('Loaded {}'.format(self.load_model_name))
            self.epoch = checkpoint['epoch']
            self.encoder.load_state_dict(checkpoint['en'])
            self.decoder.load_state_dict(checkpoint['de'])
            self.encoder_optimizer.load_state_dict(checkpoint['en_op'])
            self.decoder_optimizer.load_state_dict(checkpoint['de_op'])
            self.embedding.load_state_dict(checkpoint['embedding'])

    def train_model(self):
        best_score = 1e-200
        print_loss_total = 0  # Reset every epoch

        saving_skipped = 0
        for epoch in range(self.epoch, self.n_epochs):
            incomplete = False
            for iter in range(0, self.n_iters, self.batch_size):
                pairs = self.pairs[iter:iter + self.batch_size]
                # Skip incomplete batch
                if len(pairs) < self.batch_size:
                    incomplete = True
                    continue
                training_batch = batch2TrainData(self.vocab, pairs,
                                                 self.modality)

                # Extract fields from batch
                input_variable, lengths, target_variable, \
                    mask, max_target_len, _ = training_batch

                if incomplete:
                    break

                # Run a training iteration with the current batch
                loss = self.train(input_variable, lengths, target_variable,
                                  mask, max_target_len, iter)
                self.writer.add_scalar('{}loss'.format(self.data_dir), loss,
                                       iter)

                print_loss_total += loss

            print_loss_avg = print_loss_total * self.batch_size / self.n_iters
            print_loss_total = 0
            print('Epoch: [{}/{}] Loss: {:.4f}'.format(epoch, self.n_epochs,
                                                       print_loss_avg))

            # evaluate and save the model
            curr_score = self.evaluate_all()

            self.writer.add_scalar('{}bleu_score'.format(self.data_dir),
                                   curr_score)

            if curr_score > best_score:
                saving_skipped = 0
                best_score = curr_score
                self.save_model(epoch)

            saving_skipped += 1

            if self.use_scheduler and saving_skipped > 3:
                saving_skipped = 0
                new_lr = self.lr * 0.5
                print('Entered the dungeon...')
                if new_lr > self.lr_lower_bound:  # lower bound on lr
                    self.lr = new_lr
                    print('lr decreased to => {}'.format(self.lr))

    def train(self, input_variable, lengths, target_variable, mask,
              max_target_len, iter):
        self.encoder.train()
        self.decoder.train()
        self.encoder_optimizer.zero_grad()
        self.decoder_optimizer.zero_grad()

        input_variable = input_variable.to(self.device)
        lengths = lengths.to(self.device)
        target_variable = target_variable.to(self.device)
        mask = mask.to(self.device)

        # Initialize variables
        loss = 0
        print_losses = []
        n_totals = 0

        # Forward pass through encoder
        encoder_outputs, encoder_hidden = self.encoder(input_variable, lengths)

        # Create initial decoder input (start with SOS tokens for each sentence)
        decoder_input = torch.LongTensor([[self.SOS_TOKEN] * self.batch_size])
        decoder_input = decoder_input.to(self.device)

        # Set initial decoder hidden state to the encoder's final hidden state
        if self.unit == 'gru':
            decoder_hidden = encoder_hidden[:self.decoder.n_layers]
        else:
            decoder_hidden = (encoder_hidden[0][:self.decoder.n_layers],
                              encoder_hidden[1][:self.decoder.n_layers])
        if iter % conf['log_tb_every'] == 0:
            # Visualize latent space
            if self.unit == 'gru':
                vis_hidden = decoder_hidden[-1, :, :]
            else:
                vis_hidden = decoder_hidden[0][-1, :, :]
            self.writer.add_embedding(vis_hidden,
                                      tag='decoder_hidden_{}'.format(iter))

        use_teacher_forcing = True if random.random(
        ) < self.teacher_forcing_ratio else False

        if use_teacher_forcing:
            for t in range(max_target_len):
                decoder_output, decoder_hidden = self.decoder(
                    decoder_input, decoder_hidden, encoder_outputs)
                # Teacher forcing: next input is current target
                decoder_input = target_variable[t].view(1, -1)
                # Calculate and accumulate loss
                mask_loss, nTotal = self.mask_nll_loss(decoder_output,
                                                       target_variable[t],
                                                       mask[t])
                loss += mask_loss
                print_losses.append(mask_loss.item() * nTotal)
                n_totals += nTotal
        else:
            for t in range(max_target_len):
                decoder_output, decoder_hidden = self.decoder(
                    decoder_input, decoder_hidden, encoder_outputs)
                # No teacher forcing: next input is decoder's own current output
                _, topi = decoder_output.topk(1)
                decoder_input = torch.LongTensor(
                    [[topi[i][0] for i in range(self.batch_size)]])
                decoder_input = decoder_input.to(self.device)
                # Calculate and accumulate loss
                mask_loss, nTotal = self.mask_nll_loss(decoder_output,
                                                       target_variable[t],
                                                       mask[t])
                loss += mask_loss
                print_losses.append(mask_loss.item() * nTotal)
                n_totals += nTotal

        loss.backward()

        # Clip gradients: gradients are modified in place
        torch.nn.utils.clip_grad_norm_(self.encoder.parameters(), self.clip)
        torch.nn.utils.clip_grad_norm_(self.decoder.parameters(), self.clip)

        self.encoder_optimizer.step()
        self.decoder_optimizer.step()
        return sum(print_losses) / n_totals

    def mask_nll_loss(self, inp, target, mask):
        n_total = mask.sum()
        cross_entropy = -torch.log(
            torch.gather(inp, 1, target.view(-1, 1)).squeeze(1))
        loss = cross_entropy.masked_select(mask).sum()
        loss = loss.to(self.device)
        return loss, n_total.item()

    def save_model(self, epoch):
        directory = self.save_dir
        if not os.path.exists(directory):
            os.makedirs(directory)
        torch.save(
            {
                'epoch': epoch,
                'en': self.encoder.state_dict(),
                'de': self.decoder.state_dict(),
                'en_op': self.encoder_optimizer.state_dict(),
                'de_op': self.decoder_optimizer.state_dict(),
                'embedding': self.embedding.state_dict()
            }, '{}{}-{}-{}-{}.pth'.format(directory, self.model_code,
                                          self.modality, self.langs, epoch))

    def evaluate_all(self):
        self.encoder.eval()
        self.decoder.eval()
        searcher = GreedySearchDecoder(self.encoder, self.decoder, None,
                                       self.device, self.SOS_TOKEN)
        refs = []
        hyp = []
        for pair in self.test_pairs:
            output_words = self.evaluate(self.encoder, self.decoder, searcher,
                                         self.vocab, pair[0])
            if output_words:
                final_output = []
                for x in output_words:
                    if x == '<EOS>':
                        break
                    final_output.append(x)
                refs.append([pair[1].split()])
                hyp.append(final_output)
        bleu_scores = calculateBleuScores(refs, hyp)
        print('Bleu score: {bleu_1} | {bleu_2} | {bleu_3} | {bleu_4}'.format(
            **bleu_scores))
        eg_idx = random.choice(range(len(hyp)))
        print(hyp[eg_idx], refs[eg_idx])
        return bleu_scores['bleu_4']

    def evaluate(self,
                 encoder,
                 decoder,
                 searcher,
                 vocab,
                 sentence_or_vector,
                 max_length=conf['MAX_LENGTH']):
        with torch.no_grad():
            if self.modality == 't':  # `sentence_or_vector` ~> sentence
                # Format input sentence as a batch
                # words => indexes
                indexes_batch = [
                    indexesFromSentence(vocab, sentence_or_vector)
                ]
                if None in indexes_batch:
                    return None
                for idx, indexes in enumerate(indexes_batch):
                    indexes_batch[idx] = indexes_batch[idx] + [self.EOS_TOKEN]
                # Create lengths tensor
                lengths = torch.tensor(
                    [len(indexes) for indexes in indexes_batch])
                # Transpose dimensions of batch to match models' expectations
                input_batch = torch.LongTensor(indexes_batch).transpose(0, 1)
            else:  # `sentence_or_vector` ~> vector
                input_batch, lengths = inputVarVec([sentence_or_vector],
                                                   self.modality)

            # Use appropriate device
            input_batch = input_batch.to(self.device)
            lengths = lengths.to(self.device)
            # Decode sentence with searcher
            tokens, scores = searcher(input_batch, lengths, max_length)
            # indexes -> words
            decoded_words = [
                vocab.index2word[token.item()] for token in tokens
            ]
            return decoded_words

    def close_writer(self):
        self.writer.close()
Esempio n. 4
0
def train(input_sentences, output_sentences, input_vocab, output_vocab,
          input_reverse, output_reverse, hy, writer):
    dataset = NMTDataset(input_sentences, output_sentences, input_vocab,
                         output_vocab, input_reverse, output_reverse)
    loader = DataLoader(dataset,
                        batch_size=hy.batch_size,
                        shuffle=True,
                        drop_last=True)

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    input_vocab_size = len(input_vocab.keys())
    output_vocab_size = len(output_vocab.keys())

    encoder = EncoderRNN(input_vocab_size, hy.embedding_size, hy.hidden_size,
                         hy.rnn_layers, hy.bidirectional, device)
    decoder = DecoderRNN(output_vocab_size, hy.embedding_size, hy.hidden_size,
                         hy.rnn_layers, hy.bidirectional, device)

    loss_function = nn.CrossEntropyLoss().to(device)
    encoder_optimizer = optim.Adam(encoder.parameters(), lr=hy.lr)
    decoder_optimizer = optim.Adam(decoder.parameters(), lr=hy.lr)

    n_iterations = 0
    loss_history = []
    training_accuracy = 0.

    encoder.train()
    decoder.train()

    for epoch in range(1, hy.num_epochs + 1):
        for encoder_input, decoder_input, decoder_output in tqdm(
                loader, desc="{}/{}".format(epoch, hy.num_epochs)):
            encoder_input = encoder_input.to(device)
            decoder_input = decoder_input.to(device)
            decoder_output = decoder_output.to(device)

            encoder_optimizer.zero_grad()
            decoder_optimizer.zero_grad()

            _, encoder_hidden = encoder(encoder_input)
            logits = decoder(decoder_input, encoder_hidden)

            loss = loss_function(
                logits.view(hy.batch_size * decoder_output.shape[1], -1),
                decoder_output.view(-1))

            loss.backward()
            encoder_optimizer.step()
            decoder_optimizer.step()

            writer.add_scalar("TrainingLoss", loss.item(), n_iterations)
            n_iterations = n_iterations + 1
            loss_history.append(loss.item())

        training_accuracy = compute_model_accuracy(encoder, decoder, loader,
                                                   device, epoch, writer)
        torch.save(encoder.state_dict(),
                   "saved_runs/encoder_{}_weights.pt".format(epoch))
        torch.save(decoder.state_dict(),
                   "saved_runs/decoder_{}_weights.pt".format(epoch))

    return loss_history, training_accuracy
Esempio n. 5
0
class FusionNetwork(Sequence2SequenceNetwork):
    def __init__(self, config):
        self.init_writer()
        self.load_configuration(config)
        self.load_vocabulary()
        self.prepare_data()
        self.build_model()
        self.load_pretrained_model()
        self.train_model()
        self.save_model(self.n_epochs)
        self.evaluate_all()
        self.close_writer()

    def prepare_data(self):
        self.modality = self.modality.split('-')
        self.pairs = prepareData(self.langs, self.modality)  # dict: m => pairs
        num_pairs = len(random.choice(list(self.pairs.values())))
        rand_indices = random.sample(list(range(num_pairs)), num_pairs)
        self.n_iters = num_pairs

        for m in self.modality:
            self.pairs[m] = self.pairs[m][: self.batch_size * (
                num_pairs // self.batch_size)]
            # Shuffle all modalities the same way
            self.pairs[m] = [p for p, _ in sorted(zip(self.pairs[m], rand_indices))]
            print(random.choice(self.pairs[m]))

        print('\nLoading test data pairs')
        self.test_pairs = prepareData(self.langs,  self.modality, train=False)
        self.num_test_pairs = len(random.choice(list(self.test_pairs.values())))
        rand_indices = random.sample(list(range(self.num_test_pairs)),
                                     self.num_test_pairs)

        if self.use_embeddings:
            if self.generate_word_embeddings:
                self.embedding_wts = generateWordEmbeddings(self.vocab,
                                                            self.emb_mode)
            else:
                self.embedding_wts = loadWordEmbeddings(self.emb_mode)

    def build_model(self):
        if self.use_embeddings:
            self.embedding = nn.Embedding.from_pretrained(self.embedding_wts)
        else:
            self.embedding = nn.Embedding(self.vocab.n_words,
                                          self.embedding_dim)

        self.encoder = MultimodalEncoderRNN(self.fusion, self.hidden_size,
                                            self.enc_n_layers, self.dropout,
                                            self.unit, self.modality,
                                            self.embedding,
                                            self.device).to(self.device)

        if self.fusion == 'early' or self.fusion is None:
            parameter_list = self.encoder.parameters()
        else:
            parameter_list = []
            for m in self.encoder.modalities:
                parameter_list += list(self.encoder.encoder[m].parameters())

        # Need to expand hidden layer according to # modalities for early fusion
        self.decoder = DecoderRNN(self.attn_model, self.embedding_dim,
                                  self.hidden_size, self.vocab.n_words,
                                  self.unit, self.dec_n_layers, self.dropout,
                                  self.embedding).to(self.device)
        self.encoder_optimizer = optim.Adam(parameter_list,
                                            lr=self.lr)
        self.decoder_optimizer = optim.Adam(self.decoder.parameters(),
                                            lr=self.lr*self.dec_learning_ratio)
        self.epoch = 0  # define here to add resume training feature

    def load_pretrained_model(self):
        if self.load_model_name:
            checkpoint = torch.load(self.load_model_name,
                                    map_location=self.device)
            print('Loaded {}'.format(self.load_model_name))
            self.epoch = checkpoint['epoch']
            self.encoder.load_state_dict(checkpoint['en'])
            self.decoder.load_state_dict(checkpoint['de'])
            self.encoder_optimizer.load_state_dict(checkpoint['en_op'])
            self.decoder_optimizer.load_state_dict(checkpoint['de_op'])
            self.embedding.load_state_dict(checkpoint['embedding'])
            self.vocab.__dict__ = checkpoint['vocab_dict']
            self.evaluate_all()

    def train_model(self):
        best_score = 1e-200
        print_loss_total = 0  # Reset every epoch

        num_pairs = {}
        for m in self.modality:
            num_pairs[m] = len(self.pairs[m])

        saving_skipped = 0
        for epoch in range(self.epoch, self.n_epochs):
            incomplete = False
            for iter in range(0, self.n_iters, self.batch_size):
                training_batch = {}
                input_variable = {}
                lengths = {}
                for m in self.modality:
                    pairs = self.pairs[m][iter: iter + self.batch_size]
                    # Skip incomplete batch
                    if len(pairs) < self.batch_size:
                        incomplete = True
                        continue
                    training_batch[m] = batch2TrainData(
                        self.vocab, pairs, m)
                    # Extract fields from batch
                    input_variable[m], lengths[m], target_variable, \
                        mask, max_target_len, _ = training_batch[m]

                if incomplete:
                    break

                # Run a training iteration with the current batch
                loss = self.train(input_variable, lengths, target_variable,
                                  mask, max_target_len, epoch, iter)
                self.writer.add_scalar('{}loss'.format(self.data_dir), loss, iter)

                print_loss_total += loss

            print_loss_avg = print_loss_total * self.batch_size / self.n_iters
            print_loss_total = 0
            print('Epoch: [{}/{}] Loss: {:.4f}'.format(
                epoch, self.n_epochs, print_loss_avg))

            # evaluate and save the model
            curr_score = self.evaluate_all()

            self.writer.add_scalar('{}bleu_score'.format(self.data_dir), curr_score, iter)
            if curr_score > best_score:
                saving_skipped = 0
                best_score = curr_score
                self.save_model(epoch)

            saving_skipped += 1

            if self.use_scheduler and saving_skipped > 3:
                saving_skipped = 0
                new_lr = self.lr * 0.5
                print('Entered the dungeon...')
                if new_lr > self.lr_lower_bound:  # lower bound on lr
                    self.lr = new_lr
                    print('lr decreased to => {}'.format(self.lr))

    def train(self, input_variable, lengths, target_variable, mask,
              max_target_len, epoch, iter):
        self.encoder.train()
        self.decoder.train()
        self.encoder_optimizer.zero_grad()
        self.decoder_optimizer.zero_grad()

        for m in self.modality:
            input_variable[m] = input_variable[m].to(self.device)
            lengths[m] = lengths[m].to(self.device)
        target_variable = target_variable.to(self.device)
        mask = mask.to(self.device)

        # Initialize variables
        loss = 0
        print_losses = []
        n_totals = 0

        # Forward pass through encoder
        encoder_outputs, encoder_hidden = self.encoder(input_variable, lengths)

        # Create initial decoder input (start with SOS tokens for each sentence)
        decoder_input = torch.LongTensor([[self.SOS_TOKEN] * self.batch_size])
        decoder_input = decoder_input.to(self.device)

        # Set initial decoder hidden state to the encoder's final hidden state
        if self.unit == 'gru':
            decoder_hidden = encoder_hidden[:self.decoder.n_layers]
        else:
            decoder_hidden = (encoder_hidden[0][:self.decoder.n_layers],
                              encoder_hidden[1][:self.decoder.n_layers])
        if iter % conf['log_tb_every'] == 1:
            # Visualize latent space
            if self.unit == 'gru':
                vis_hidden = decoder_hidden[-1, :, :]
            else:
                vis_hidden = decoder_hidden[0][-1, :, :]
            self.writer.add_embedding(vis_hidden,
                                      tag='decoder_hidden_{}_{}'.format(
                                        epoch, iter))

        use_teacher_forcing = True if random.random() < self.teacher_forcing_ratio else False

        if use_teacher_forcing:
            for t in range(max_target_len):
                decoder_output, decoder_hidden = self.decoder(
                    decoder_input, decoder_hidden, encoder_outputs)
                # Teacher forcing: next input is current target
                decoder_input = target_variable[t].view(1, -1)
                # Calculate and accumulate loss
                mask_loss, nTotal = self.mask_nll_loss(decoder_output,
                                                       target_variable[t],
                                                       mask[t])
                loss += mask_loss
                print_losses.append(mask_loss.item() * nTotal)
                n_totals += nTotal
        else:
            for t in range(max_target_len):
                decoder_output, decoder_hidden = self.decoder(
                    decoder_input, decoder_hidden, encoder_outputs
                )
                # No teacher forcing: next input is decoder's own current output
                _, topi = decoder_output.topk(1)
                decoder_input = torch.LongTensor(
                    [[topi[i][0] for i in range(self.batch_size)]])
                decoder_input = decoder_input.to(self.device)
                # Calculate and accumulate loss
                mask_loss, nTotal = self.mask_nll_loss(
                    decoder_output, target_variable[t], mask[t])
                loss += mask_loss
                print_losses.append(mask_loss.item() * nTotal)
                n_totals += nTotal

        loss.backward()

        # Clip gradients: gradients are modified in place
        torch.nn.utils.clip_grad_norm_(self.encoder.parameters(), self.clip)
        torch.nn.utils.clip_grad_norm_(self.decoder.parameters(), self.clip)

        self.encoder_optimizer.step()
        self.decoder_optimizer.step()
        return sum(print_losses) / n_totals

    def mask_nll_loss(self, inp, target, mask):
        n_total = mask.sum()
        cross_entropy = -torch.log(torch.gather(inp, 1,
                                   target.view(-1, 1)).squeeze(1))
        loss = cross_entropy.masked_select(mask).sum()
        loss = loss.to(self.device)
        return loss, n_total.item()

    def save_model(self, epoch):
        directory = self.save_dir
        if not os.path.exists(directory):
            os.makedirs(directory)
        torch.save({
            'epoch': epoch,
            'en': self.encoder.state_dict(),
            'de': self.decoder.state_dict(),
            'en_op': self.encoder_optimizer.state_dict(),
            'de_op': self.decoder_optimizer.state_dict(),
            'vocab_dict': self.vocab.__dict__,
            'embedding': self.embedding.state_dict()},
            '{}{}-{}-{}.pth'.format(directory, self.model_code, epoch, iter))

    def evaluate_all(self):
        self.encoder.eval()
        self.decoder.eval()
        searcher = GreedySearchDecoder(
            self.encoder, self.decoder, None, self.device, self.SOS_TOKEN)
        refs = []
        hyp = []

        for id in range(self.num_test_pairs):
            # Sample test pairs of each modality
            output_words, reference = self.evaluate(
                searcher, self.vocab, self.test_pairs, id)
            if output_words:
                final_output = []
                for x in output_words:
                    if x == '<EOS>':
                        break
                    final_output.append(x)
                refs.append(reference.split())
                hyp.append(final_output)

        bleu_scores = calculateBleuScores(refs, hyp)
        print('Bleu score: {bleu_1} | {bleu_2} | {bleu_3} | {bleu_4}'.format(
            **bleu_scores))
        eg_idx = random.choice(range(len(hyp)))
        print(hyp[eg_idx], refs[eg_idx])
        return bleu_scores['bleu_4']

    def evaluate(self, searcher, vocab, test_pairs, id,
                 max_length=conf['MAX_LENGTH']):
        lengths = {}
        input_batch = {}
        with torch.no_grad():
            reference = random.choice(list(test_pairs.values()))[id][1]
            for m in self.modality:
                sentence_or_vector = test_pairs[m][id][0]
                if m == 't':  # `sentence_or_vector` ~> sentence
                    # Format input sentence as a batch
                    # words => indexes
                    indexes_batch = [indexesFromSentence(vocab, sentence_or_vector)]
                    if None in indexes_batch:
                        return None
                    for idx, indexes in enumerate(indexes_batch):
                        indexes_batch[idx] = indexes_batch[idx] + [self.EOS_TOKEN]
                    # Create lengths tensor
                    lengths[m] = torch.tensor(
                        [len(indexes) for indexes in indexes_batch])
                    # Transpose dimensions of batch to match models' expectations
                    input_batch[m] = torch.LongTensor(
                        indexes_batch).transpose(0, 1)
                else:  # `sentence_or_vector` ~> vector
                    input_batch[m], lengths[m] = \
                        inputVarVec([sentence_or_vector], m)

                # Use appropriate device
                input_batch[m] = input_batch[m].to(self.device)
                lengths[m] = lengths[m].to(self.device)

            # Decode sentence with searcher
            tokens, scores = searcher(input_batch, lengths, max_length)
            # indexes -> words
            decoded_words = [vocab.index2word[token.item()] for token in tokens]
            return decoded_words, reference

    def close_writer(self):
        self.writer.close()