Esempio n. 1
0
def solve_sylvester(a, b, q):
    """Computes a solution (X) to the Sylvester equation (AX + XB = Q).

    .. versionadded:: 0.11.0

    Parameters
    ----------
    a : array, shape (M, M)
        Leading matrix of the Sylvester equation
    b : array, shape (N, N)
        Trailing matrix of the Sylvester equation
    q : array, shape (M, N)
        Right-hand side

    Returns
    -------
    x : array, shape (M, N)
        The solution to the Sylvester equation.

    Raises
    ------
    LinAlgError
        If solution was not found

    Notes
    -----
    Computes a solution to the Sylvester matrix equation via the Bartels-
    Stewart algorithm.  The A and B matrices first undergo Schur
    decompositions.  The resulting matrices are used to construct an
    alternative Sylvester equation (``RY + YS^T = F``) where the R and S
    matrices are in quasi-triangular form (or, when R, S or F are complex,
    triangular form).  The simplified equation is then solved using
    ``*TRSYL`` from LAPACK directly.

    """

    # Compute the Schur decomp form of a
    r, u = schur(a, output='real')

    # Compute the Schur decomp of b
    s, v = schur(b.conj().transpose(), output='real')

    # Construct f = u'*q*v
    f = np.dot(np.dot(u.conj().transpose(), q), v)

    # Call the Sylvester equation solver
    trsyl, = get_lapack_funcs(('trsyl', ), (r, s, f))
    if trsyl == None:
        raise RuntimeError(
            'LAPACK implementation does not contain a proper Sylvester equation solver (TRSYL)'
        )
    y, scale, info = trsyl(r, s, f, tranb='C')

    y = scale * y

    if info < 0:
        raise LinAlgError("Illegal value encountered in the %d term" %
                          (-info, ))

    return np.dot(np.dot(u, y), v.conj().transpose())
Esempio n. 2
0
def solve_sylvester(a,b,q):
    """Computes a solution (X) to the Sylvester equation (AX + XB = Q).

    .. versionadded:: 0.11.0

    Parameters
    ----------
    a : array, shape (M, M)
        Leading matrix of the Sylvester equation
    b : array, shape (N, N)
        Trailing matrix of the Sylvester equation
    q : array, shape (M, N)
        Right-hand side

    Returns
    -------
    x : array, shape (M, N)
        The solution to the Sylvester equation.

    Raises
    ------
    LinAlgError
        If solution was not found

    Notes
    -----
    Computes a solution to the Sylvester matrix equation via the Bartels-
    Stewart algorithm.  The A and B matrices first undergo Schur
    decompositions.  The resulting matrices are used to construct an
    alternative Sylvester equation (``RY + YS^T = F``) where the R and S
    matrices are in quasi-triangular form (or, when R, S or F are complex,
    triangular form).  The simplified equation is then solved using
    ``*TRSYL`` from LAPACK directly.

    """

    # Compute the Schur decomp form of a
    r,u = schur(a, output='real')

    # Compute the Schur decomp of b
    s,v = schur(b.conj().transpose(), output='real')

    # Construct f = u'*q*v
    f = np.dot(np.dot(u.conj().transpose(), q), v)

    # Call the Sylvester equation solver
    trsyl, = get_lapack_funcs(('trsyl',), (r,s,f))
    if trsyl == None:
        raise RuntimeError('LAPACK implementation does not contain a proper Sylvester equation solver (TRSYL)')
    y, scale, info = trsyl(r, s, f, tranb='C')

    y = scale*y

    if info < 0:
        raise LinAlgError("Illegal value encountered in the %d term" % (-info,))

    return np.dot(np.dot(u, y), v.conj().transpose())
Esempio n. 3
0
def sqrtm(A, disp=True):
    """Matrix square root.

    Parameters
    ----------
    A : array, shape(M,M)
        Matrix whose square root to evaluate
    disp : boolean
        Print warning if error in the result is estimated large
        instead of returning estimated error. (Default: True)

    Returns
    -------
    sgnA : array, shape(M,M)
        Value of the sign function at A

    (if disp == False)
    errest : float
        Frobenius norm of the estimated error, ||err||_F / ||A||_F

    Notes
    -----
    Uses algorithm by Nicholas J. Higham

    """
    A = asarray(A)
    if len(A.shape)!=2:
        raise ValueError("Non-matrix input to matrix function.")
    T, Z = schur(A)
    T, Z = rsf2csf(T,Z)
    n,n = T.shape

    R = np.zeros((n,n),T.dtype.char)
    for j in range(n):
        R[j,j] = sqrt(T[j,j])
        for i in range(j-1,-1,-1):
            s = 0
            for k in range(i+1,j):
                s = s + R[i,k]*R[k,j]
            R[i,j] = (T[i,j] - s)/(R[i,i] + R[j,j])

    R, Z = all_mat(R,Z)
    X = (Z * R * Z.H)

    if disp:
        nzeig = np.any(diag(T)==0)
        if nzeig:
            print "Matrix is singular and may not have a square root."
        return X.A
    else:
        arg2 = norm(X*X - A,'fro')**2 / norm(A,'fro')
        return X.A, arg2
Esempio n. 4
0
def sqrtm(A, disp=True):
    """Matrix square root.

    Parameters
    ----------
    A : array, shape(M,M)
        Matrix whose square root to evaluate
    disp : boolean
        Print warning if error in the result is estimated large
        instead of returning estimated error. (Default: True)

    Returns
    -------
    sgnA : array, shape(M,M)
        Value of the sign function at A

    (if disp == False)
    errest : float
        Frobenius norm of the estimated error, ||err||_F / ||A||_F

    Notes
    -----
    Uses algorithm by Nicholas J. Higham

    """
    A = asarray(A)
    if len(A.shape)!=2:
        raise ValueError("Non-matrix input to matrix function.")
    T, Z = schur(A)
    T, Z = rsf2csf(T,Z)
    n,n = T.shape

    R = np.zeros((n,n),T.dtype.char)
    for j in range(n):
        R[j,j] = sqrt(T[j,j])
        for i in range(j-1,-1,-1):
            s = 0
            for k in range(i+1,j):
                s = s + R[i,k]*R[k,j]
            R[i,j] = (T[i,j] - s)/(R[i,i] + R[j,j])

    R, Z = all_mat(R,Z)
    X = (Z * R * Z.H)

    if disp:
        nzeig = np.any(diag(T)==0)
        if nzeig:
            print "Matrix is singular and may not have a square root."
        return X.A
    else:
        arg2 = norm(X*X - A,'fro')**2 / norm(A,'fro')
        return X.A, arg2
Esempio n. 5
0
def solve_discrete_are(a, b, q, r):
    """Solves the disctrete algebraic Riccati equation, or DARE, defined as
    (X = A'XA-(A'XB)(R+B'XB)^-1(B'XA)+Q), directly using a Schur decomposition
    method.

    Parameters
    ----------
    a : array_like
        Non-singular m x m square matrix

    b : array_like
        m x n matrix

    q : array_like
        m x m square matrix

    r : array_like
        Non-singular n x n square matrix

    Returns
    -------
    x : array_like
        Solution to the continuous Lyapunov equation

    Notes
    -----
    Method taken from:
    Laub, "A Schur Method for Solving Algebraic Riccati Equations."
    U.S. Energy Research and Development Agency under contract
    ERDA-E(49-18)-2087.
    http://dspace.mit.edu/bitstream/handle/1721.1/1301/R-0859-05666488.pdf

    See Also
    --------
    solve_continuous_are : Solves the continuous algebraic Riccati equation
    """

    try:
        g = inv(r)
    except LinAlgError:
        raise ValueError('Matrix R in the algebraic Riccati equation solver is ill-conditioned')

    g = np.dot(np.dot(b, g), b.conj().transpose())

    try:
        ait = inv(a).conj().transpose() # ait is "A inverse transpose"
    except LinAlgError:
        raise ValueError('Matrix A in the algebraic Riccati equation solver is ill-conditioned')

    z11 = a+np.dot(np.dot(g, ait), q)
    z12 = -1.0*np.dot(g, ait)
    z21 = -1.0*np.dot(ait, q)
    z22 = ait

    z = np.vstack((np.hstack((z11, z12)), np.hstack((z21, z22))))

    # Note: we need to sort the upper left of s to lie within the unit circle,
    #       while the lower right is outside (Laub, p. 7)
    [s, u, sorted] = schur(z, sort='iuc')

    (m,n) = u.shape

    u11 = u[0:m/2, 0:n/2]
    u12 = u[0:m/2, n/2:n]
    u21 = u[m/2:m, 0:n/2]
    u22 = u[m/2:m, n/2:n]
    u11i = inv(u11)

    return np.dot(u21, u11i)
Esempio n. 6
0
def solve_continuous_are(a, b, q, r):
    """Solves the continuous algebraic Riccati equation, or CARE, defined
    as (A'X + XA - XBR^-1B'X+Q=0) directly using a Schur decomposition
    method.

    Parameters
    ----------
    a : array_like
        m x m square matrix

    b : array_like
        m x n matrix

    q : array_like
        m x m square matrix

    r : array_like
        Non-singular n x n square matrix

    Returns
    -------
    x : array_like
        Solution (m x m) to the continuous algebraic Riccati equation

    Notes
    -----
    Method taken from:
    Laub, "A Schur Method for Solving Algebraic Riccati Equations."
    U.S. Energy Research and Development Agency under contract
    ERDA-E(49-18)-2087.
    http://dspace.mit.edu/bitstream/handle/1721.1/1301/R-0859-05666488.pdf

    See Also
    --------
    solve_discrete_are : Solves the discrete algebraic Riccati equation
    """

    try:
        g = inv(r)
    except LinAlgError:
        raise ValueError('Matrix R in the algebraic Riccati equation solver is ill-conditioned')

    g = np.dot(np.dot(b, g), b.conj().transpose())

    z11 = a
    z12 = -1.0*g
    z21 = -1.0*q
    z22 = -1.0*a.conj().transpose()

    z = np.vstack((np.hstack((z11, z12)), np.hstack((z21, z22))))

    # Note: we need to sort the upper left of s to have negative real parts,
    #       while the lower right is positive real components (Laub, p. 7)
    [s, u, sorted] = schur(z, sort='lhp')

    (m, n) = u.shape

    u11 = u[0:m/2, 0:n/2]
    u12 = u[0:m/2, n/2:n]
    u21 = u[m/2:m, 0:n/2]
    u22 = u[m/2:m, n/2:n]
    u11i = inv(u11)

    return np.dot(u21, u11i)
Esempio n. 7
0
def funm(A, func, disp=True):
    """Evaluate a matrix function specified by a callable.

    Returns the value of matrix-valued function f at A. The function f
    is an extension of the scalar-valued function func to matrices.

    Parameters
    ----------
    A : array, shape(M,M)
        Matrix at which to evaluate the function
    func : callable
        Callable object that evaluates a scalar function f.
        Must be vectorized (eg. using vectorize).
    disp : boolean
        Print warning if error in the result is estimated large
        instead of returning estimated error. (Default: True)

    Returns
    -------
    fA : array, shape(M,M)
        Value of the matrix function specified by func evaluated at A

    (if disp == False)
    errest : float
        1-norm of the estimated error, ||err||_1 / ||A||_1

    """
    # Perform Shur decomposition (lapack ?gees)
    A = asarray(A)
    if len(A.shape)!=2:
        raise ValueError("Non-matrix input to matrix function.")
    if A.dtype.char in ['F', 'D', 'G']:
        cmplx_type = 1
    else:
        cmplx_type = 0
    T, Z = schur(A)
    T, Z = rsf2csf(T,Z)
    n,n = T.shape
    F = diag(func(diag(T)))  # apply function to diagonal elements
    F = F.astype(T.dtype.char) # e.g. when F is real but T is complex

    minden = abs(T[0,0])

    # implement Algorithm 11.1.1 from Golub and Van Loan
    #                 "matrix Computations."
    for p in range(1,n):
        for i in range(1,n-p+1):
            j = i + p
            s = T[i-1,j-1] * (F[j-1,j-1] - F[i-1,i-1])
            ksl = slice(i,j-1)
            val = dot(T[i-1,ksl],F[ksl,j-1]) - dot(F[i-1,ksl],T[ksl,j-1])
            s = s + val
            den = T[j-1,j-1] - T[i-1,i-1]
            if den != 0.0:
                s = s / den
            F[i-1,j-1] = s
            minden = min(minden,abs(den))

    F = dot(dot(Z, F),transpose(conjugate(Z)))
    if not cmplx_type:
        F = toreal(F)

    tol = {0:feps, 1:eps}[_array_precision[F.dtype.char]]
    if minden == 0.0:
        minden = tol
    err = min(1, max(tol,(tol/minden)*norm(triu(T,1),1)))
    if product(ravel(logical_not(isfinite(F))),axis=0):
        err = Inf
    if disp:
        if err > 1000*tol:
            print "Result may be inaccurate, approximate err =", err
        return F
    else:
        return F, err
Esempio n. 8
0
def funm(A, func, disp=True):
    """Evaluate a matrix function specified by a callable.

    Returns the value of matrix-valued function f at A. The function f
    is an extension of the scalar-valued function func to matrices.

    Parameters
    ----------
    A : array, shape(M,M)
        Matrix at which to evaluate the function
    func : callable
        Callable object that evaluates a scalar function f.
        Must be vectorized (eg. using vectorize).
    disp : boolean
        Print warning if error in the result is estimated large
        instead of returning estimated error. (Default: True)

    Returns
    -------
    fA : array, shape(M,M)
        Value of the matrix function specified by func evaluated at A

    (if disp == False)
    errest : float
        1-norm of the estimated error, ||err||_1 / ||A||_1

    """
    # Perform Shur decomposition (lapack ?gees)
    A = asarray(A)
    if len(A.shape)!=2:
        raise ValueError("Non-matrix input to matrix function.")
    if A.dtype.char in ['F', 'D', 'G']:
        cmplx_type = 1
    else:
        cmplx_type = 0
    T, Z = schur(A)
    T, Z = rsf2csf(T,Z)
    n,n = T.shape
    F = diag(func(diag(T)))  # apply function to diagonal elements
    F = F.astype(T.dtype.char) # e.g. when F is real but T is complex

    minden = abs(T[0,0])

    # implement Algorithm 11.1.1 from Golub and Van Loan
    #                 "matrix Computations."
    for p in range(1,n):
        for i in range(1,n-p+1):
            j = i + p
            s = T[i-1,j-1] * (F[j-1,j-1] - F[i-1,i-1])
            ksl = slice(i,j-1)
            val = dot(T[i-1,ksl],F[ksl,j-1]) - dot(F[i-1,ksl],T[ksl,j-1])
            s = s + val
            den = T[j-1,j-1] - T[i-1,i-1]
            if den != 0.0:
                s = s / den
            F[i-1,j-1] = s
            minden = min(minden,abs(den))

    F = dot(dot(Z, F),transpose(conjugate(Z)))
    if not cmplx_type:
        F = toreal(F)

    tol = {0:feps, 1:eps}[_array_precision[F.dtype.char]]
    if minden == 0.0:
        minden = tol
    err = min(1, max(tol,(tol/minden)*norm(triu(T,1),1)))
    if product(ravel(logical_not(isfinite(F))),axis=0):
        err = Inf
    if disp:
        if err > 1000*tol:
            print "Result may be inaccurate, approximate err =", err
        return F
    else:
        return F, err