Esempio n. 1
0
def test_jacobi_ncc_solve(N, a0, b0, k_ncc, k_arg, dealias, dtype):
    """
    This tests for aliasing errors when solving the equation
        f(x)*u(x) = f(x)*g(x).

    With 3/2 dealiasing, the RHS product will generally contain aliasing
    errors in the last 2*max(k_ncc, k_arg) modes. We can eliminate these
    by zeroing the corresponding number of modes of f(x) and/or g(x).
    """
    c = coords.Coordinate('x')
    d = distributor.Distributor((c,))
    b = basis.Jacobi(c, size=N, a=a0, b=b0, bounds=(0, 1), dealias=dealias)
    b_ncc = b.clone_with(a=a0+k_ncc, b=b0+k_ncc)
    b_arg = b.clone_with(a=a0+k_arg, b=b0+k_arg)
    f = field.Field(dist=d, bases=(b_ncc,), dtype=dtype)
    g = field.Field(dist=d, bases=(b_arg,), dtype=dtype)
    u = field.Field(dist=d, bases=(b_arg,), dtype=dtype)
    f['g'] = np.random.randn(*f['g'].shape)
    g['g'] = np.random.randn(*g['g'].shape)
    kmax = max(k_ncc, k_arg)
    if kmax > 0 and dealias < 2:
        f['c'][-kmax:] = 0
        g['c'][-kmax:] = 0
    problem = problems.LBVP([u])
    problem.add_equation((f*u, f*g))
    solver = solvers.LinearBoundaryValueSolver(problem)
    solver.solve()
    assert np.allclose(u['c'], g['c'])
Esempio n. 2
0
def test_jacobi_differentiate(N, a, b, k, dtype):
    c = coords.Coordinate('x')
    d = distributor.Distributor((c,))
    b = basis.Jacobi(c, size=N, a0=a, b0=b, a=a+k, b=b+k, bounds=(0, 1))
    x = b.local_grid(1)
    f = field.Field(dist=d, bases=(b,), dtype=dtype)
    f['g'] = x**5
    fx = operators.Differentiate(f, c).evaluate()
    assert np.allclose(fx['g'], 5*x**4)
Esempio n. 3
0
def test_jacobi_convert_constant(N, a, b, k, dtype, layout):
    c = coords.Coordinate('x')
    d = distributor.Distributor((c,))
    b = basis.Jacobi(c, size=N, a0=a, b0=b, a=a+k, b=b+k, bounds=(0, 1))
    fc = field.Field(dist=d, dtype=dtype)
    fc['g'] = 1
    fc[layout]
    f = operators.convert(fc, (b,)).evaluate()
    assert np.allclose(fc['g'], f['g'])
Esempio n. 4
0
def test_jacobi_convert_explicit(N, a, b, k, dtype, layout):
    c = coords.Coordinate('x')
    d = distributor.Distributor((c,))
    b = basis.Jacobi(c, size=N, a0=a, b0=b, a=a+k, b=b+k, bounds=(0, 1))
    x = b.local_grid(1)
    f = field.Field(dist=d, bases=(b,), dtype=dtype)
    f['g'] = x**5
    fx = operators.Differentiate(f, c)
    f[layout]
    g = operators.convert(f, fx.domain.bases).evaluate()
    assert np.allclose(g['g'], f['g'])
Esempio n. 5
0
def test_jacobi_interpolate(N, a, b, k, dtype):
    c = coords.Coordinate('x')
    d = distributor.Distributor((c,))
    b = basis.Jacobi(c, size=N, a0=a, b0=b, a=a+k, b=b+k, bounds=(0, 1))
    x = b.local_grid(1)
    f = field.Field(dist=d, bases=(b,), dtype=dtype)
    f['g'] = x**5
    results = []
    for p in [0, 1, np.random.rand()]:
        fp = operators.Interpolate(f, c, p).evaluate()
        results.append(np.allclose(fp['g'], p**5))
    assert all(results)
Esempio n. 6
0
def test_jacobi_ufunc(N, a, b, dtype, dealias, func):
    c = coords.Coordinate('x')
    d = distributor.Distributor((c, ))
    b = basis.Jacobi(c, size=N, a=a, b=b, bounds=(0, 1), dealias=dealias)
    x = b.local_grid(1)
    f = field.Field(dist=d, bases=(b, ), dtype=dtype)
    if func is np.arccosh:
        f['g'] = 1 + x**2
    else:
        f['g'] = x**2
    g0 = func(f['g'])
    g = func(f).evaluate()
    assert np.allclose(g['g'], g0)
Esempio n. 7
0
def test_J_scalar_roundtrip(a, b, N, dealias, dtype):
    if comm.size == 1:
        c = coords.Coordinate('x')
        d = distributor.Distributor([c])
        xb = basis.Jacobi(c, a=a, b=b, size=N, bounds=(0, 1), dealias=dealias)
        x = xb.local_grid(dealias)
        # Scalar transforms
        u = field.Field(dist=d, bases=(xb, ), dtype=dtype)
        u.preset_scales(dealias)
        u['g'] = ug = 2 * x**2 - 1
        u['c']
        assert np.allclose(u['g'], ug)
    else:
        pytest.skip("Can only test 1D transform in serial")
Esempio n. 8
0
def test_jacobi_convert_implicit(N, a, b, k, dtype):
    c = coords.Coordinate('x')
    d = distributor.Distributor((c,))
    b = basis.Jacobi(c, size=N, a0=a, b0=b, a=a+k, b=b+k, bounds=(0, 1))
    x = b.local_grid(1)
    f = field.Field(dist=d, bases=(b,), dtype=dtype)
    f['g'] = x**5
    fx = operators.Differentiate(f, c).evaluate()
    g = field.Field(dist=d, bases=(b,), dtype=dtype)
    problem = problems.LBVP([g])
    problem.add_equation((g, fx))
    solver = solvers.LinearBoundaryValueSolver(problem)
    solver.solve()
    assert np.allclose(g['g'], fx['g'])
Esempio n. 9
0
def build_CF_J(a, b, Nx, Ny, dealias_x, dealias_y):
    c = coords.CartesianCoordinates('x', 'y')
    d = distributor.Distributor((c, ))
    xb = basis.ComplexFourier(c.coords[0],
                              size=Nx,
                              bounds=(0, np.pi),
                              dealias=dealias_x)
    yb = basis.Jacobi(c.coords[1],
                      a=a,
                      b=b,
                      size=Ny,
                      bounds=(0, 1),
                      dealias=dealias_y)
    x = xb.local_grid(dealias_x)
    y = yb.local_grid(dealias_y)
    return c, d, xb, yb, x, y
Esempio n. 10
0
def test_jacobi_ncc_eval(N, a0, b0, k_ncc, k_arg, dealias, dtype):
    """
    This tests for aliasing errors when evaluating the product
        f(x) * g(x)
    as both an NCC operator and with the pseudospectral method.

    With 3/2 dealiasing, the product will generally contain aliasing
    errors in the last 2*max(k_ncc, k_arg) modes. We can eliminate these
    by zeroing the corresponding number of modes of f(x) and/or g(x).
    """
    c = coords.Coordinate('x')
    d = distributor.Distributor((c,))
    b = basis.Jacobi(c, size=N, a=a0, b=b0, bounds=(0, 1), dealias=dealias)
    b_ncc = b.clone_with(a=a0+k_ncc, b=b0+k_ncc)
    b_arg = b.clone_with(a=a0+k_arg, b=b0+k_arg)
    f = field.Field(dist=d, bases=(b_ncc,), dtype=dtype)
    g = field.Field(dist=d, bases=(b_arg,), dtype=dtype)
    f['g'] = np.random.randn(*f['g'].shape)
    g['g'] = np.random.randn(*g['g'].shape)
    x = b.local_grid(1)
    f['g'] = np.cos(6*x)
    g['g'] = np.cos(6*x)
    kmax = max(k_ncc, k_arg)
    if kmax > 0 and dealias < 2:
        f['c'][-kmax:] = 0
        g['c'][-kmax:] = 0
    vars = [g]
    w0 = f * g
    w1 = w0.reinitialize(ncc=True, ncc_vars=vars)
    problem = problems.LBVP(vars)
    problem.add_equation((w1, 0))
    solver = solvers.LinearBoundaryValueSolver(problem)
    w1.store_ncc_matrices(vars, solver.subproblems)
    w0 = w0.evaluate()
    w2 = field.Field(dist=d, bases=(b,), dtype=dtype)
    w2.preset_scales(w2.domain.dealias)
    w2['g'] = w0['g']
    w2['c']
    w0['c']
    print(np.max(np.abs(w2['g'] - w0['g'])))
    w2 = operators.Convert(w2, w0.domain.bases[0]).evaluate()
    w1 = w1.evaluate_as_ncc()
    assert np.allclose(w0['c'], w2['c'])