Esempio n. 1
0
def test_non_binary():

    t1 = dc.array(2, 3)
    t2 = dc.array(3, 2)

    mul = dc.matmul(t1, t2)
    #print ("multiplication : " , mul.to_string())

    t3 = dc.array(2, 3, 4)
    #print("old shape", t1.shape())
    new_shape = dc.vectorSizeT([2, 12])
    t3.reshape(new_shape)
    t3.reshape(4, 6)
    t3.reshape((4, 6))
    t3.reshape([4, 6])
    #print("new shape", t1.shape())

    py_list = list(t3)
    # convert tensor to python list
    py_tuple = tuple(t3)
    # convert tensor to python tuple
    np_ary = t3.numpy()
    # convert to numpy array

    #t4 = dc.thresholded_relu(t1);
    #print("relu", t4.to_string())

    #replace first few values in tensor with new values.
    data = dc.vectorFloat([1.0, 2.0, 3.0, 4.0])
    t3.load(data)
    #print(t3.to_string())

    arr = dc.array([1, 2])
    #print(arr)
    arr2D = dc.array([[1, 2], [10, 20]]).asTypeInt()
    #print(arr2D)
    arrRand = dc.random(2, 3)
    #print(arrRand)
    empty = dc.empty(3, 2)
    #print(empty)
    zeros = dc.zeros(2, 2)
    #print(zeros);
    ones = dc.ones(2, 2)
    #print(ones)
    ranges = dc.arange(15, 3, 2)
    #print(ranges)

    dc.reshape(arr2D, (1, 4))

    #3D MatMul Test1
    a = dc.array(2, 2, 2)
    b = dc.array(2, 2, 2)
    adata = dc.vectorFloat([1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0])
    bdata = dc.vectorFloat([8.0, 7.0, 6.0, 5.0, 4.0, 3.0, 2.0, 1.0])
    a.load(adata)
    b.load(bdata)
    test_multiply(a, b)

    #3D MatMul Test2
    a = dc.array(2, 2, 3)
    b = dc.array(2, 3, 2)
    adata = dc.vectorFloat(
        [1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0])
    bdata = dc.vectorFloat(
        [12.0, 11.0, 10.0, 9.0, 8.0, 7.0, 6.0, 5.0, 4.0, 3.0, 2.0, 1.0])
    a.load(adata)
    b.load(bdata)
    test_multiply(a, b)
Esempio n. 2
0
    def addOPNode(self, node):

        op_type = dnnc.getOpCode(node.op_type)
        if (op_type is dnnc.opInvalid):
            print("ERROR (ONNX):" + node.op_type +
                  " is not a valid graph-node op type.")
            return None

        dcNode = self._dcGraph.addOPNode(node.name, op_type)

        for nd in node.input:
            dcNode.addInput(nd)

        for nd in node.output:
            dcNode.addOutput(nd)

        for attr in node.attribute:
            attr_type = dnnc.IR_DataType_NOTYPE
            attr_vals = []
            attr_vec = None
            if attr.type == onnx.AttributeProto.INT:
                attr_type = dnnc.IR_DataType_INT32
                attr_vals.append(attr.i)
                attr_vec = dnnc.vectorInt(attr_vals)
            elif attr.type == onnx.AttributeProto.INTS:
                attr_type = dnnc.IR_DataType_INT32
                for val in attr.ints:
                    attr_vals.append(int(val))
                attr_vec = dnnc.vectorInt(attr_vals)
            elif attr.type == onnx.AttributeProto.FLOAT:
                attr_type = dnnc.IR_DataType_FLOAT
                attr_vals.append(attr.f)
                attr_vec = dnnc.vectorFloat(attr_vals)
            elif attr.type == onnx.AttributeProto.FLOATS:
                attr_type = dnnc.IR_DataType_FLOAT
                for val in attr.floats:
                    attr_vals.append(float(val))
                attr_vec = dnnc.vectorFloat(attr_vals)
            elif attr.type == onnx.AttributeProto.STRING:
                attr_type = dnnc.IR_DataType_STRING
                attr_vals.append(str(attr.s))
                attr_vec = dnnc.vectorStr(attr_vals)
            elif attr.type == onnx.AttributeProto.STRINGS:
                attr_type = dnnc.IR_DataType_STRING
                for val in attr.strings:
                    attr_vals.append(str(val))
                attr_vec = dnnc.vectorStr(attr_vals)
            elif attr.type == onnx.AttributeProto.TENSOR:
                if (attr.t.data_type == onnx.TensorProto.INT8
                        or attr.t.data_type == onnx.TensorProto.INT16
                        or attr.t.data_type == onnx.TensorProto.INT32
                        or attr.t.data_type == onnx.TensorProto.INT64):

                    attr_type = attr.t.data_type
                    attr_data = None
                    pack_format = 'P'
                    if (attr.t.data_type == onnx.TensorProto.INT8):
                        pack_format = 'b'
                    if (attr.t.data_type == onnx.TensorProto.INT16):
                        pack_format = 'h'
                    if (attr.t.data_type == onnx.TensorProto.INT32):
                        if (attr.t.int32_data):
                            attr_data = attr.t.int32_data
                        pack_format = 'i'
                    if (attr.t.data_type == onnx.TensorProto.INT64):
                        if (attr.t.int64_data):
                            attr_data = attr.t.int64_data
                        pack_format = 'q'

                    if (attr_data is None):
                        len = 1
                        for d in attr.t.dims:
                            len *= d
                        attr_data = struct.unpack(pack_format * len,
                                                  attr.t.raw_data)

                    if (attr_data is not None):
                        attr_tensor = dnnc.intTensor(attr.t.dims, attr.name)
                        attr_tensor.load(attr_data)
                        attr_vec = dnnc.vectorTensorInt()
                        attr_vec.push_back(attr_tensor)
                    else:
                        print("ERROR (ONNX): could not extract data for graph-node " + \
                                node.name + "\'s attribute " +  attr.name + ".\n")

                elif (attr.t.data_type == onnx.TensorProto.FLOAT16
                      or attr.t.data_type == onnx.TensorProto.FLOAT
                      or attr.t.data_type == onnx.TensorProto.DOUBLE):

                    attr_type = attr.t.data_type
                    attr_data = None
                    pack_format = 'P'
                    if (attr.t.data_type == onnx.TensorProto.FLOAT16):
                        if (attr.t.float_data):
                            attr_data = attr.t.float_data
                        pack_format = 'e'
                    if (attr.t.data_type == onnx.TensorProto.FLOAT):
                        if (attr.t.float_data):
                            attr_data = attr.t.float_data
                        pack_format = 'f'
                    if (attr.t.data_type == onnx.TensorProto.DOUBLE):
                        if (attr.t.double_data):
                            attr_data = attr.t.double_data
                        pack_format = 'd'

                    if (attr_data is None):
                        len = 1
                        for d in attr.t.dims:
                            len *= d
                        attr_data = struct.unpack(pack_format * len,
                                                  attr.t.raw_data)

                    if (attr_data is not None):
                        attr_tensor = dnnc.floatTensor(attr.t.dims, attr.name)
                        attr_tensor.load(attr_data)
                        attr_vec = dnnc.vectorTensorFloat()
                        attr_vec.push_back(attr_tensor)
                    else:
                        print("ERROR (ONNX): could not extract data for graph-node " + \
                                node.name + "\'s attribute " +  attr.name + ".\n")
                else:
                    print("ERROR (ONNX): attribute tensor's datatype " +
                          str(attr.t.data_type) + " isn't understood.")

            elif attr.type == onnx.AttributeProto.TENSORS:
                attr_type = dnnc.IR_DataType_TENSORS
                attr_vals.append(attr.tensors)
                attr_vec = dnnc.vectorTensorFloat(dnnc.floatTensor(attr_vals))
            elif attr.type == onnx.AttributeProto.GRAPH:
                attr_type = dnnc.IR_DataType_GRAPH
                attr_vals.append(attr.g)
                print(
                    "ERROR (ONNX): sub-graph in graph-node is not yet supported."
                )
            elif attr.type == onnx.AttributeProto.GRAPHS:
                attr_type = dnnc.IR_DataType_GRAPH
                attr_vals.append(attr.graphs)
                print(
                    "ERROR (ONNX): sub-graph in graph-node is not yet supported."
                )
            else:
                print("ERROR (ONNX): graph-node " + node.name + "\'s attribute " + \
                       attr.name + " type " + str(attr.type) + " is not valid.")
                continue

            if (attr_type is dnnc.IR_DataType_NOTYPE or attr_vec is None
                    or attr_vec.size() == 0):
                print("ERROR (ONNX): graph-node " + node.name + "\'s attribute " + \
                       attr.name + " has no data.")
                continue

            attr_code = dnnc.getAttrName(attr.name)
            if (attr_code is dnnc.attr_invalid):
                print("WARN (ONNX): " + attr.name +
                      " is not a valid graph-node attribute.")
                print("             operator " + node.op_type +
                      " will be added without this attribute.")

            cAttrData = dnnc.irTypeData(attr_type, attr_vec)
            cAttr = dnnc.nodeAttribute(attr_code, cAttrData)
            dcNode.addAttribute(cAttr)

        return dcNode
Esempio n. 3
0
    def addParams(self, param):

        if (param is None):
            return None

        if (len(param.FindInitializationErrors()) > 0):
            print("WARNING (ONNX): initializer " + param.name +
                  " has following errors.\n")
            print("               ", param.FindInitializationErrors())
            print("                trying to load data with errors.\n")

        param_type = dnnc.IR_DataType_NOTYPE
        param_shape = dnnc.vectorSizeT(param.dims)
        param_vec = None
        param_vals = None
        if param.data_type == param.INT8:
            param_type = dnnc.IR_DataType_INT8
            param_vals = [int(n) for n in param.int32_data]
            if (len(param_vals) == 0):
                param_vals = [int(n) for n in param.raw_data]
            if (self._writeParamToDisk):
                self.writeParamsToFile(param.name, param_vals)
                param_vec = dnnc.vectorInt()
            else:
                param_vec = dnnc.vectorInt(param_vals)
        elif param.data_type == param.INT16:
            param_type = dnnc.IR_DataType_INT16
            param_vals = [int(n) for n in param.int32_data]
            if (len(param_vals) == 0):
                param_vals = [int(n) for n in param.raw_data]
            if (self._writeParamToDisk):
                self.writeParamsToFile(param.name, param_vals)
                param_vec = dnnc.vectorInt()
            else:
                param_vec = dnnc.vectorInt(param_vals)
        elif param.data_type == param.INT32:
            param_type = dnnc.IR_DataType_INT32
            param_vals = [int(n) for n in param.int32_data]
            if (len(param_vals) == 0):
                param_vals = [int(n) for n in param.raw_data]
            if (self._writeParamToDisk):
                self.writeParamsToFile(param.name, param_vals)
                param_vec = dnnc.vectorInt()
            else:
                param_vec = dnnc.vectorInt(param_vals)
        elif param.data_type == param.INT64:
            param_type = dnnc.IR_DataType_INT64
            param_vals = [int(n) for n in param.int64_data]
            if (len(param_vals) == 0):
                param_vals = [int(n) for n in param.raw_data]
            if (self._writeParamToDisk):
                self.writeParamsToFile(param.name, param_vals)
                param_vec = dnnc.vectorInt()
            else:
                param_vec = dnnc.vectorInt(param_vals)
        elif param.data_type == param.UINT8:
            param_type = dnnc.IR_DataType_UINT8
            param_vals = [int(n) for n in param.uint64_data]
            if (len(param_vals) == 0):
                param_vals = [int(n) for n in param.raw_data]
            if (self._writeParamToDisk):
                self.writeParamsToFile(param.name, param_vals)
                param_vec = dnnc.vectorInt()
            else:
                param_vec = dnnc.vectorInt(param_vals)
        elif param.data_type == param.UINT16:
            param_type = dnnc.IR_DataType_UINT16
            param_vals = [int(n) for n in param.uint64_data]
            if (len(param_vals) == 0):
                param_vals = [int(n) for n in param.raw_data]
            if (self._writeParamToDisk):
                self.writeParamsToFile(param.name, param_vals)
                param_vec = dnnc.vectorInt()
            else:
                param_vec = dnnc.vectorInt(param_vals)
        elif param.data_type == param.UINT32:
            param_type = dnnc.IR_DataType_UINT32
            param_vals = [int(n) for n in param.uint64_data]
            if (len(param_vals) == 0):
                param_vals = [int(n) for n in param.raw_data]
            if (self._writeParamToDisk):
                self.writeParamsToFile(param.name, param_vals)
                param_vec = dnnc.vectorInt()
            else:
                param_vec = dnnc.vectorInt(param_vals)
        elif param.data_type == param.UINT64:
            param_type = dnnc.IR_DataType_UINT64
            param_vals = [int(n) for n in param.uint64_data]
            if (len(param_vals) == 0):
                param_vals = [int(n) for n in param.raw_data]
            if (self._writeParamToDisk):
                self.writeParamsToFile(param.name, param_vals)
                param_vec = dnnc.vectorInt()
            else:
                param_vec = dnnc.vectorInt(param_vals)
        elif param.data_type == param.FLOAT16:
            param_type = dnnc.IR_DataType_FLOAT16
            param_vals = [float(n) for n in param.float_data]
            if (len(param_vals) == 0):
                param_vals = [float(n) for n in param.raw_data]
            if (self._writeParamToDisk):
                self.writeParamsToFile(param.name, param_vals)
                param_vec = dnnc.vectorInt()
            else:
                param_vec = dnnc.vectorFloat(param_vals)
        elif param.data_type == param.BFLOAT16:
            param_type = dnnc.IR_DataType_BFLOAT16
            param_vals = [float(n) for n in param.float_data]
            if (len(param_vals) == 0):
                param_vals = [float(n) for n in param.raw_data]
            if (self._writeParamToDisk):
                self.writeParamsToFile(param.name, param_vals)
                param_vec = dnnc.vectorFloat()
            else:
                param_vec = dnnc.vectorFloat(param_vals)
        elif param.data_type == param.FLOAT:
            param_type = dnnc.IR_DataType_FLOAT
            param_vals = [float(n) for n in param.float_data]
            if (len(param_vals) == 0):
                param_vals = [float(n) for n in param.raw_data]
            if (self._writeParamToDisk):
                self.writeParamsToFile(param.name, param_vals)
                param_vec = dnnc.vectorFloat()
            else:
                param_vec = dnnc.vectorFloat(param_vals)
        elif param.data_type == param.DOUBLE:
            param_type = dnnc.IR_DataType_DOUBLE
            param_vals = [float(n) for n in param.double_data]
            if (len(param_vals) == 0):
                param_vals = [float(n) for n in param.raw_data]
            if (self._writeParamToDisk):
                self.writeParamsToFile(param.name, param_vals)
                param_vec = dnnc.vectorFloat()
            else:
                param_vec = dnnc.vectorFloat(param_vals)
        elif param.data_type == param.STRING:
            param_type = dnnc.IR_DataType_STRING
            param_vals = [str(s) for s in param.string_data]
            if (len(param_vals) == 0):
                param_vals = [str(n) for n in param.raw_data]
            if (self._writeParamToDisk):
                self.writeParamsToFile(param.name, param_vals)
                param_vec = dnnc.vectorStr()
            else:
                param_vec = dnnc.vectorStr(param_vals)
        elif param.data_type == param.BOOL:
            param_type = dnnc.IR_DataType_BOOL
            param_vals = [bool(b) for b in param.raw_data]
            if (len(param_vals) == 0):
                param_vals = [bool(b) for b in param.raw_data]
            if (self._writeParamToDisk):
                self.writeParamsToFile(param.name, param_vals)
                param_vec = dnnc.vectorBool()
            else:
                param_vec = dnnc.vectorBool(param_vals)
        else:
            print("ERROR (ONNX): graph-node " + node.name + "\'s attribute " + \
                   param.name + " type " + str(param.data_type) + " is not valid.")

        if (self._writeParamToDisk is False
                and (param_type is dnnc.IR_DataType_NOTYPE or param_vec is None
                     or param_vec.size() == 0)):
            print("ERROR (ONNX): did not find data for initializer ",
                  param.name)
            return

        param_irData = dnnc.irTypeData(param_type, param_vec)
        dnnc_param = dnnc.dnnParameters(param.name, param_shape, param_irData)
        self._dcGraph.addParameters(dnnc_param)

        return dnnc_param
Esempio n. 4
0
  def addParams(self, param):

      if ( param is None ):
        return None;

      if ( len(param.FindInitializationErrors()) > 0 ):
        print("WARNING (ONNX): initializer " + param.name + " has following errors.\n");
        print("               ", param.FindInitializationErrors());
        print("                trying to load data with errors.\n");

      param_type = dnnc.IR_DataType_NOTYPE;
      param_shape = dnnc.vectorSizeT(param.dims)
      param_vec  = None
      param_vals = None
      param_len=1
      for d in param.dims:
        param_len *= d
      if param.data_type == param.INT8 :
        pack_format = 'b'
        param_type = dnnc.IR_DataType_INT8;
        param_vals = [int(n) for n in param.int32_data]
        if ( len(param_vals) == 0 ):
          param_vals = struct.unpack(pack_format*param_len, param.raw_data) ;
        if ( self._writeParamToDisk ) :
          self.writeParamsToFile(param.name, param_vals);
          param_vec = dnnc.vectorInt()
        else:
          param_vec = dnnc.vectorInt(param_vals)
      elif param.data_type == param.INT16 :
        pack_format = 'h'
        param_type = dnnc.IR_DataType_INT16;
        param_vals = [int(n) for n in param.int32_data]
        if ( len(param_vals) == 0 ):
          param_vals = struct.unpack(pack_format*param_len, param.raw_data) ;
        if ( self._writeParamToDisk ) :
          self.writeParamsToFile(param.name, param_vals);
          param_vec = dnnc.vectorInt()
        else:
          param_vec = dnnc.vectorInt(param_vals)
      elif param.data_type == param.INT32:
        pack_format = 'i'
        param_type = dnnc.IR_DataType_INT32;
        param_vals = [int(n) for n in param.int32_data]
        if ( len(param_vals) == 0 ):
          param_vals = struct.unpack(pack_format*param_len, param.raw_data) ;
        if ( self._writeParamToDisk ) :
          self.writeParamsToFile(param.name, param_vals);
          param_vec = dnnc.vectorInt()
        else:
          param_vec = dnnc.vectorInt(param_vals)
      elif param.data_type == param.INT64:
        pack_format = 'q'
        param_type = dnnc.IR_DataType_INT64;
        param_vals = [int(n) for n in param.int64_data]
        if ( len(param_vals) == 0 ):
          param_vals = struct.unpack(pack_format*param_len, param.raw_data) ;
        if ( self._writeParamToDisk ) :
          self.writeParamsToFile(param.name, param_vals);
          param_vec = dnnc.vectorInt()
        else:
          param_vec = dnnc.vectorInt(param_vals)
      elif param.data_type == param.UINT8 :
        pack_format = 'B'
        param_type = dnnc.IR_DataType_UINT8;
        param_vals = [int(n) for n in param.uint64_data]
        if ( len(param_vals) == 0 ):
          param_vals = struct.unpack(pack_format*param_len, param.raw_data) ;
        if ( self._writeParamToDisk ) :
          self.writeParamsToFile(param.name, param_vals);
          param_vec = dnnc.vectorInt()
        else:
          param_vec = dnnc.vectorInt(param_vals)
      elif param.data_type == param.UINT16 :
        pack_format = 'H'
        param_type = dnnc.IR_DataType_UINT16;
        param_vals = [int(n) for n in param.uint64_data]
        if ( len(param_vals) == 0 ):
          param_vals = struct.unpack(pack_format*param_len, param.raw_data) ;
        if ( self._writeParamToDisk ) :
          self.writeParamsToFile(param.name, param_vals);
          param_vec = dnnc.vectorInt()
        else:
          param_vec = dnnc.vectorInt(param_vals)
      elif param.data_type == param.UINT32:
        pack_format = 'I'
        param_type = dnnc.IR_DataType_UINT32;
        param_vals = [int(n) for n in param.uint64_data]
        if ( len(param_vals) == 0 ):
          param_vals = struct.unpack(pack_format*param_len, param.raw_data) ;
        if ( self._writeParamToDisk ) :
          self.writeParamsToFile(param.name, param_vals);
          param_vec = dnnc.vectorInt()
        else:
          param_vec = dnnc.vectorInt(param_vals)
      elif param.data_type == param.UINT64:
        pack_format = 'L'
        param_type = dnnc.IR_DataType_UINT64;
        param_vals = [int(n) for n in param.uint64_data]
        if ( len(param_vals) == 0 ):
          param_vals = struct.unpack(pack_format*param_len, param.raw_data) ;
        if ( self._writeParamToDisk ) :
          self.writeParamsToFile(param.name, param_vals);
          param_vec = dnnc.vectorInt()
        else:
          param_vec = dnnc.vectorInt(param_vals)
      elif param.data_type == param.FLOAT16 :
        pack_format = 'e'
        param_type = dnnc.IR_DataType_FLOAT16;
        param_vals = [float(n) for n in param.float_data]
        if ( len(param_vals) == 0 ):
          param_vals = struct.unpack(pack_format*param_len, param.raw_data) ;
        if ( self._writeParamToDisk ) :
          self.writeParamsToFile(param.name, param_vals);
          param_vec = dnnc.vectorInt()
        else:
          param_vec = dnnc.vectorFloat(param_vals)
      elif param.data_type == param.BFLOAT16 :
        pack_format = 'e'
        param_type = dnnc.IR_DataType_BFLOAT16;
        param_vals = [float(n) for n in param.float_data]
        if ( len(param_vals) == 0 ):
          param_vals = struct.unpack(pack_format*param_len, param.raw_data) ;
        if ( self._writeParamToDisk ) :
          self.writeParamsToFile(param.name, param_vals);
          param_vec = dnnc.vectorFloat()
        else:
          param_vec = dnnc.vectorFloat(param_vals)
      elif param.data_type == param.FLOAT:
        pack_format = 'f'
        param_type = dnnc.IR_DataType_FLOAT;
        param_vals = [float(n) for n in param.float_data]
        if ( len(param_vals) == 0 ):
          param_vals = struct.unpack(pack_format*param_len, param.raw_data) ;
        if ( self._writeParamToDisk ) :
          self.writeParamsToFile(param.name, param_vals);
          param_vec = dnnc.vectorFloat()
        else:
          param_vec = dnnc.vectorFloat(param_vals)
      elif param.data_type == param.DOUBLE:
        pack_format = 'd'
        param_type = dnnc.IR_DataType_DOUBLE;
        param_vals = [float(n) for n in param.double_data]
        if ( len(param_vals) == 0 ):
          param_vals = struct.unpack(pack_format*param_len, param.raw_data) ;
        if ( self._writeParamToDisk ) :
          self.writeParamsToFile(param.name, param_vals);
          param_vec = dnnc.vectorFloat()
        else:
          param_vec = dnnc.vectorFloat(param_vals)
      elif param.data_type == param.STRING:
        pack_format = 's'
        param_type = dnnc.IR_DataType_STRING;
        param_vals = [str(s) for s in param.string_data]
        if ( len(param_vals) == 0 ):
          param_vals = struct.unpack(pack_format*param_len, param.raw_data) ;
        if ( self._writeParamToDisk ) :
          self.writeParamsToFile(param.name, param_vals);
          param_vec = dnnc.vectorStr()
        else:
          param_vec = dnnc.vectorStr(param_vals)
      elif param.data_type == param.BOOL:
        pack_format = '?'
        param_type = dnnc.IR_DataType_BOOL;
        param_vals = [bool(b) for b in param.raw_data]
        if ( len(param_vals) == 0 ):
          param_vals = struct.unpack(pack_format*param_len, param.raw_data) ;
        if ( self._writeParamToDisk ) :
          self.writeParamsToFile(param.name, param_vals);
          param_vec = dnnc.vectorBool()
        else:
          param_vec = dnnc.vectorBool(param_vals)
      else:
        print("ERROR (ONNX): graph-node " + node.name + "\'s attribute " + \
               param.name + " type " + str(param.data_type) + " is not valid.")

      if ( self._writeParamToDisk is False and
              (param_type is dnnc.IR_DataType_NOTYPE or param_vec is None or param_vec.size()==0) ) :
        print("ERROR (ONNX): did not find data for initializer ", param.name);
        return;

      param_irData = dnnc.irTypeData(param_type, param_vec) ;
      dnnc_param  = dnnc.dnnParameters(param.name, param_shape, param_irData);
      self._dcGraph.addParameters(dnnc_param) ;

      return dnnc_param;