Esempio n. 1
0
    def frame_callback(vis, frame_idx):
        print("Frame idx", frame_idx)
        image = cv2.imread(
            seq_info["image_filenames"][frame_idx], cv2.IMREAD_COLOR)

        vis.set_image(image.copy())

        if seq_info["detections"] is not None:
            detections = deep_sort_app.create_detections(
                seq_info["detections"], frame_idx)
            vis.draw_detections(detections)

        mask = results[:, 0].astype(np.int) == frame_idx
        track_ids = results[mask, 1].astype(np.int)
        boxes = results[mask, 2:6]
        vis.draw_groundtruth(track_ids, boxes)

        if show_false_alarms:
            groundtruth = seq_info["groundtruth"]
            mask = groundtruth[:, 0].astype(np.int) == frame_idx
            gt_boxes = groundtruth[mask, 2:6]
            for box in boxes:
                # NOTE(nwojke): This is not strictly correct, because we don't
                # solve the assignment problem here.
                min_iou_overlap = 0.5
                if iou(box, gt_boxes).max() < min_iou_overlap:
                    vis.viewer.color = 0, 0, 255
                    vis.viewer.thickness = 4
                    vis.viewer.rectangle(*box.astype(np.int))
Esempio n. 2
0
    def frame_callback(vis, frame_idx):
        print("Frame idx", frame_idx)
        image = cv2.imread(seq_info["image_filenames"][frame_idx],
                           cv2.IMREAD_COLOR)

        vis.set_image(image.copy())

        if seq_info["detections"] is not None:
            detections = deep_sort_app.create_detections(
                seq_info["detections"], frame_idx)
            vis.draw_detections(detections)

        mask = results[:, 0].astype(np.int) == frame_idx
        track_ids = results[mask, 1].astype(np.int)
        boxes = results[mask, 2:6]
        vis.draw_groundtruth(track_ids, boxes)

        if show_false_alarms:
            groundtruth = seq_info["groundtruth"]
            mask = groundtruth[:, 0].astype(np.int) == frame_idx
            gt_boxes = groundtruth[mask, 2:6]
            for box in boxes:
                # NOTE(nwojke): This is not strictly correct, because we don't
                # solve the assignment problem here.
                min_iou_overlap = 0.5
                if iou(box, gt_boxes).max() < min_iou_overlap:
                    vis.viewer.color = 0, 0, 255
                    vis.viewer.thickness = 4
                    vis.viewer.rectangle(*box.astype(np.int))
Esempio n. 3
0
    def frame_callback(vis, frame_idx):
        #프레임별로 처리
        print("Frame idx", frame_idx)
        image = cv2.imread(
            seq_info["image_filenames"][frame_idx], cv2.IMREAD_COLOR)

        vis.set_image(image.copy())

        if seq_info["detections"] is not None:
            detections = deep_sort_app.create_detections(
                seq_info["detections"], frame_idx)
            vis.draw_detections(detections)

        mask = results[:, 0].astype(np.int) == frame_idx
        track_ids = results[mask, 1].astype(np.int)         #해당 frame_id인 mask값들 중 [1]들인 id값 추출
        boxes = results[mask, 2:6]
        vis.draw_groundtruth(track_ids, boxes)

        # 발위치 10개 중 y값만 빼기
        h_file = os.path.dirname(result_file)  # result/text/

        with open(h_file + '/ID_h.txt', 'r') as f_hi:
            line_splits = [int(l.split(',')[1]) for l in f_hi.read().splitlines()[1:]]
        i = 0
        #print(line_splits)



        if show_false_alarms:
            groundtruth = seq_info["groundtruth"]
            mask = groundtruth[:, 0].astype(np.int) == frame_idx
            gt_boxes = groundtruth[mask, 2:6]
            for box in boxes:
                # NOTE(nwojke): This is not strictly correct, because we don't
                # solve the assignment problem here.
                min_iou_overlap = 0.5
                if iou(box, gt_boxes).max() < min_iou_overlap:
                    vis.viewer.color = 0, 0, 255
                    vis.viewer.thickness = 4
                    vis.viewer.rectangle(*box.astype(np.int))


                if IDnum != 0:                            # Tracking 하는 ID만 보여주고 발 표시 !!!!!!!


                    vis.viewer.circle(
                    box[0] + box[2] / 2, box[1] + box[3], 3)