Esempio n. 1
0
    def test_calc_avgpool(self):
        image_data = self._image_data()
        net = self._network('avgpool')
        input_bounds = naive_bounds.input_bounds(image_data.image, delta=.1)
        dual_obj, dual_var_lists = self._build_objective(
            net, input_bounds, image_data.label)

        # Explicitly build the expected TensorFlow graph for calculating objective.
        (
            conv2d_0,
            relu_1,  # pylint:disable=unused-variable
            avgpool_2,
            relu_3,  # pylint:disable=unused-variable
            linear_obj) = self._verifiable_layer_builder(net).build_layers()
        (mu_0, ), (lam_1, ), (mu_2, ), _ = dual_var_lists

        # Expected input bounds for each layer.
        conv2d_0_lb, conv2d_0_ub = self._expected_input_bounds(
            image_data.image, .1)
        relu_1_lb, relu_1_ub = ibp.IntervalBounds(
            conv2d_0_lb, conv2d_0_ub).apply_conv2d(None, conv2d_0.module.w,
                                                   conv2d_0.module.b, 'SAME',
                                                   (1, 1))
        avgpool_2_lb = tf.nn.relu(relu_1_lb)
        avgpool_2_ub = tf.nn.relu(relu_1_ub)
        relu_3_lb = tf.nn.avg_pool(avgpool_2_lb,
                                   ksize=[2, 2],
                                   padding='VALID',
                                   strides=(1, 1))
        relu_3_ub = tf.nn.avg_pool(avgpool_2_ub,
                                   ksize=[2, 2],
                                   padding='VALID',
                                   strides=(1, 1))

        # Expected objective value.
        objective = 0
        act_coeffs_0 = -common.conv_transpose(
            mu_0, conv2d_0.module.w, conv2d_0.input_shape, 'SAME', (1, 1))
        obj_0 = -tf.reduce_sum(mu_0 * conv2d_0.module.b, axis=(2, 3, 4))
        objective += standard_layer_calcs.linear_dual_objective(
            None, act_coeffs_0, obj_0, conv2d_0_lb, conv2d_0_ub)
        objective += standard_layer_calcs.activation_layer_dual_objective(
            tf.nn.relu, mu_0, lam_1, relu_1_lb, relu_1_ub)
        act_coeffs_2 = -common.avgpool_transpose(
            mu_2,
            result_shape=relu_1.output_shape,
            kernel_shape=(2, 2),
            strides=(1, 1))
        objective += standard_layer_calcs.linear_dual_objective(
            lam_1, act_coeffs_2, 0., avgpool_2_lb, avgpool_2_ub)
        objective_w, objective_b = common.targeted_objective(
            linear_obj.module.w, linear_obj.module.b, image_data.label)
        shaped_objective_w = tf.reshape(
            objective_w,
            [self._num_classes(), self._batch_size()] + avgpool_2.output_shape)
        objective += standard_layer_calcs.activation_layer_dual_objective(
            tf.nn.relu, mu_2, -shaped_objective_w, relu_3_lb, relu_3_ub)
        objective += objective_b

        self._assert_dual_objective_close(objective, dual_obj, image_data)
Esempio n. 2
0
    def get_objective_weights(self, labels, target_strategy=None):
        """Elides the objective with this (final) linear layer."""
        assert self._b is not None, 'Last layer must have a bias.'
        if target_strategy is None:
            w, b = common.targeted_objective(self._w, self._b, labels)
        else:
            w, b = target_strategy.target_objective(self._w, self._b, labels)

        return ObjectiveWeights(w, b)
Esempio n. 3
0
    def test_calc_conv_batchnorm(self):
        image_data = self._image_data()
        net = self._network('conv_batchnorm')
        input_bounds = naive_bounds.input_bounds(image_data.image, delta=.1)
        dual_obj, dual_var_lists = self._build_objective(
            net, input_bounds, image_data.label)

        # Explicitly build the expected TensorFlow graph for calculating objective.
        (
            conv2d_0,
            relu_1,  # pylint:disable=unused-variable
            linear_2,
            relu_3,  # pylint:disable=unused-variable
            linear_obj) = self._verifiable_layer_builder(net).build_layers()
        (mu_0, ), (lam_1, ), (mu_2, ), _ = dual_var_lists

        # Expected input bounds for each layer.
        conv2d_0_lb, conv2d_0_ub = self._expected_input_bounds(
            image_data.image, .1)
        conv2d_0_w, conv2d_0_b = layer_utils.combine_with_batchnorm(
            conv2d_0.module.w, None, conv2d_0.batch_norm)
        relu_1_lb, relu_1_ub = ibp.IntervalBounds(
            conv2d_0_lb, conv2d_0_ub).apply_conv2d(None, conv2d_0_w,
                                                   conv2d_0_b, 'VALID', (1, 1))
        linear_2_lb = snt.BatchFlatten()(tf.nn.relu(relu_1_lb))
        linear_2_ub = snt.BatchFlatten()(tf.nn.relu(relu_1_ub))
        linear_2_w, linear_2_b = layer_utils.combine_with_batchnorm(
            linear_2.module.w, None, linear_2.batch_norm)
        relu_3_lb, relu_3_ub = ibp.IntervalBounds(linear_2_lb,
                                                  linear_2_ub).apply_linear(
                                                      None, linear_2_w,
                                                      linear_2_b)

        # Expected objective value.
        objective = 0
        act_coeffs_0 = -common.conv_transpose(
            mu_0, conv2d_0_w, conv2d_0.input_shape, 'VALID', (1, 1))
        obj_0 = -tf.reduce_sum(mu_0 * conv2d_0_b, axis=(2, 3, 4))
        objective += standard_layer_calcs.linear_dual_objective(
            None, act_coeffs_0, obj_0, conv2d_0_lb, conv2d_0_ub)
        objective += standard_layer_calcs.activation_layer_dual_objective(
            tf.nn.relu, mu_0, lam_1, relu_1_lb, relu_1_ub)
        act_coeffs_2 = -tf.tensordot(mu_2, tf.transpose(linear_2_w), axes=1)
        obj_2 = -tf.tensordot(mu_2, linear_2_b, axes=1)
        objective += standard_layer_calcs.linear_dual_objective(
            snt.BatchFlatten(preserve_dims=2)(lam_1), act_coeffs_2, obj_2,
            linear_2_lb, linear_2_ub)
        objective_w, objective_b = common.targeted_objective(
            linear_obj.module.w, linear_obj.module.b, image_data.label)
        objective += standard_layer_calcs.activation_layer_dual_objective(
            tf.nn.relu, mu_2, -objective_w, relu_3_lb, relu_3_ub)
        objective += objective_b

        self._assert_dual_objective_close(objective, dual_obj, image_data)
Esempio n. 4
0
    def test_calc_linear(self):
        image_data = self._image_data()
        net = self._network('linear')
        input_bounds = naive_bounds.input_bounds(image_data.image, delta=.1)
        dual_obj, dual_var_lists = self._build_objective(
            net, input_bounds, image_data.label)

        # Explicitly build the expected TensorFlow graph for calculating objective.
        (
            linear_0,
            relu_1,  # pylint:disable=unused-variable
            linear_obj) = self._verifiable_layer_builder(net).build_layers()
        (mu_0, ), _ = dual_var_lists

        # Expected input bounds for each layer.
        linear_0_lb, linear_0_ub = self._expected_input_bounds(
            image_data.image, .1)
        linear_0_lb = snt.BatchFlatten()(linear_0_lb)
        linear_0_ub = snt.BatchFlatten()(linear_0_ub)
        relu_1_lb, relu_1_ub = ibp.IntervalBounds(linear_0_lb,
                                                  linear_0_ub).apply_linear(
                                                      None, linear_0.module.w,
                                                      linear_0.module.b)

        # Expected objective value.
        objective = 0
        act_coeffs_0 = -tf.tensordot(
            mu_0, tf.transpose(linear_0.module.w), axes=1)
        obj_0 = -tf.tensordot(mu_0, linear_0.module.b, axes=1)
        objective += standard_layer_calcs.linear_dual_objective(
            None, act_coeffs_0, obj_0, linear_0_lb, linear_0_ub)
        objective_w, objective_b = common.targeted_objective(
            linear_obj.module.w, linear_obj.module.b, image_data.label)
        objective += standard_layer_calcs.activation_layer_dual_objective(
            tf.nn.relu, mu_0, -objective_w, relu_1_lb, relu_1_ub)
        objective += objective_b

        self._assert_dual_objective_close(objective, dual_obj, image_data)