def loadmodels(args): models = util.loadmodels(args, "cfg/classification") if args.mode == "top": for name in models.keys(): models[name]['trainer'].max_steps = 10000 # training on top 500 never seems to need more than 10000 steps, since it's a small training set for cfg in models.itervalues(): cfg["model"].conv_seq[0].fsize = 24 # Override default max motif length return models
def loadmodels(args): models = util.loadmodels(args, "cfg/classification") if args.mode == "top": for name in models.keys(): models[name][ 'trainer'].max_steps = 10000 # training on top 500 never seems to need more than 10000 steps, since it's a small training set for cfg in models.itervalues(): cfg["model"].conv_seq[ 0].fsize = 24 # Override default max motif length return models
def loadmodels(args): models = util.loadmodels(args, "cfg/regression/maxpool") for cfg in models.itervalues(): cfg["model"].conv_seq[0].fsize = 24 # Override default max motif length return models
def loadmodels(args): models = util.loadmodels(args, "cfg/classification") return models
def loadmodels(args): models = util.loadmodels(args, "cfg/regression/maxpool") for cfg in models.itervalues(): cfg["model"].conv_seq[ 0].fsize = 24 # Override default max motif length return models
def loadmodels(args): models = util.loadmodels(args, modeldir="cfg/regression/allpool") return models