Esempio n. 1
0
def load_data(path='3T3_NIH.npz', test_size=.2, seed=0):
    """Loads the 3T3-NIH dataset.

    # Args:
        path: path where to cache the dataset locally
            (relative to ~/.keras/datasets).
        test_size: fraction of data to reserve as test data
        seed: the seed for randomly shuffling the dataset

    Returns:
        Tuple of Numpy arrays: `(x_train, y_train), (x_test, y_test)`.
    """
    basepath = os.path.expanduser(os.path.join('~', '.keras', 'datasets'))
    prefix = path.split(os.path.sep)[:-1]
    data_dir = os.path.join(basepath, *prefix) if prefix else basepath
    if not os.path.exists(data_dir):
        os.makedirs(data_dir)
    elif not os.path.isdir(data_dir):
        raise IOError('{} exists but is not a directory'.format(data_dir))

    path = get_file(
        path,
        origin='https://deepcell-data.s3.amazonaws.com/nuclei/3T3_NIH.npz',
        file_hash='954b6f4ad6a71435b84c40726837e4ba')

    train_dict, test_dict = get_data(path, test_size=test_size, seed=seed)

    x_train, y_train = train_dict['X'], train_dict['y']
    x_test, y_test = test_dict['X'], test_dict['y']
    return (x_train, y_train), (x_test, y_test)
Esempio n. 2
0
    def test_get_data(self):
        test_size = .1
        img_w, img_h = 30, 30
        X = np.random.random((10, img_w, img_h, 1))
        y = np.random.randint(3, size=(10, img_w, img_h, 1))

        temp_dir = self.get_temp_dir()
        good_file = os.path.join(temp_dir, 'good.npz')
        np.savez(good_file, X=X, y=y)

        train_dict, test_dict = data_utils.get_data(good_file,
                                                    test_size=test_size)

        X_test, X_train = test_dict['X'], train_dict['X']

        self.assertIsInstance(train_dict, dict)
        self.assertIsInstance(test_dict, dict)
        self.assertAlmostEqual(X_test.size / (X_test.size + X_train.size),
                               test_size)

        # test bad filepath
        bad_file = os.path.join(temp_dir, 'bad.npz')
        np.savez(bad_file, X_bad=X, y_bad=y)
        with self.assertRaises(KeyError):
            _, _ = data_utils.get_data(bad_file)

        # test siamese_daughters mode
        good_file = os.path.join(temp_dir, 'siamese.trks')
        self._write_test_trks(good_file)

        train_dict, test_dict = data_utils.get_data(good_file,
                                                    mode='siamese_daughters',
                                                    test_size=test_size)

        X_test, X_train = test_dict['X'], train_dict['X']

        d_test, d_train = test_dict['daughters'], train_dict['daughters']

        self.assertIsInstance(train_dict, dict)
        self.assertIsInstance(test_dict, dict)
        self.assertIsInstance(d_test, list)
        self.assertIsInstance(d_train, list)
        self.assertEqual(len(d_train), X_train.shape[0])
        self.assertEqual(len(d_test), X_test.shape[0])
        self.assertAlmostEqual(X_test.size / (X_test.size + X_train.size),
                               test_size)
Esempio n. 3
0
def load_data(path='mousebrain.npz'):
    """Loads the MNIST dataset.
    # Arguments
        path: path where to cache the dataset locally
            (relative to ~/.keras/datasets).
    # Returns
        Tuple of Numpy arrays: `(x_train, y_train), (x_test, y_test)`.
    """
    path = get_file(path,
                    origin='https://deepcell-data.s3.amazonaws.com/nuclei/mousebrain.npz',
                    file_hash='9c91304f7da7cc5559f46b2c5fc2eace')

    train_dict, test_dict = get_data(path, seed=0, test_size=.2)

    x_train, y_train = train_dict['X'], train_dict['y']
    x_test, y_test = test_dict['X'], test_dict['y']
    return (x_train, y_train), (x_test, y_test)
Esempio n. 4
0
def load_data(path='HEK293.npz'):
    """Loads the MNIST dataset.
    # Arguments
        path: path where to cache the dataset locally
            (relative to ~/.keras/datasets).
    # Returns
        Tuple of Numpy arrays: `(x_train, y_train), (x_test, y_test)`.
    """
    path = get_file(
        path,
        origin='https://deepcell-data.s3.amazonaws.com/nuclei/HEK293.npz',
        file_hash='c0bbfba54b90e63a2010133a198e6e63')

    train_dict, test_dict = get_data(path, seed=0, test_size=.2)

    x_train, y_train = train_dict['X'], train_dict['y']
    x_test, y_test = test_dict['X'], test_dict['y']
    return (x_train, y_train), (x_test, y_test)
Esempio n. 5
0
def load_data(path='3T3_NIH.npz'):
    """Loads the MNIST dataset.
    # Arguments
        path: path where to cache the dataset locally
            (relative to ~/.keras/datasets).
    # Returns
        Tuple of Numpy arrays: `(x_train, y_train), (x_test, y_test)`.
    """
    path = get_file(
        path,
        origin='https://deepcell-data.s3.amazonaws.com/nuclei/HeLa_S3.npz',
        file_hash='42c631726713bbb180d4a0a07c2e8107')

    train_dict, test_dict = get_data(path, seed=0, test_size=.2)

    x_train, y_train = train_dict['X'], train_dict['y']
    x_test, y_test = test_dict['X'], test_dict['y']
    return (x_train, y_train), (x_test, y_test)
Esempio n. 6
0
def load_data(path='3T3_NIH.npz'):
    """Loads the MNIST dataset.
    # Arguments
        path: path where to cache the dataset locally
            (relative to ~/.keras/datasets).
    # Returns
        Tuple of Numpy arrays: `(x_train, y_train), (x_test, y_test)`.
    """
    path = get_file(
        path,
        origin='https://deepcell-data.s3.amazonaws.com/nuclei/3T3_NIH.npz',
        file_hash='954b6f4ad6a71435b84c40726837e4ba')

    train_dict, test_dict = get_data(path, seed=0, test_size=.2)

    x_train, y_train = train_dict['X'], train_dict['y']
    x_test, y_test = test_dict['X'], test_dict['y']
    return (x_train, y_train), (x_test, y_test)
Esempio n. 7
0
def train_model_sample(model,
                       dataset,
                       expt='',
                       test_size=.1,
                       n_epoch=10,
                       batch_size=32,
                       num_gpus=None,
                       transform=None,
                       window_size=None,
                       balance_classes=True,
                       max_class_samples=None,
                       log_dir='/data/tensorboard_logs',
                       model_dir='/data/models',
                       model_name=None,
                       focal=False,
                       gamma=0.5,
                       optimizer=SGD(lr=0.01,
                                     decay=1e-6,
                                     momentum=0.9,
                                     nesterov=True),
                       lr_sched=rate_scheduler(lr=0.01, decay=0.95),
                       rotation_range=0,
                       flip=False,
                       shear=0,
                       zoom_range=0,
                       seed=None,
                       **kwargs):
    is_channels_first = K.image_data_format() == 'channels_first'

    if model_name is None:
        todays_date = datetime.datetime.now().strftime('%Y-%m-%d')
        data_name = os.path.splitext(os.path.basename(dataset))[0]
        model_name = '{}_{}_{}'.format(todays_date, data_name, expt)
    model_path = os.path.join(model_dir, '{}.h5'.format(model_name))
    loss_path = os.path.join(model_dir, '{}.npz'.format(model_name))

    train_dict, test_dict = get_data(dataset, test_size=test_size, seed=seed)

    n_classes = model.layers[-1].output_shape[1 if is_channels_first else -1]

    # the data, shuffled and split between train and test sets
    print('X_train shape:', train_dict['X'].shape)
    print('y_train shape:', train_dict['y'].shape)
    print('X_test shape:', test_dict['X'].shape)
    print('y_test shape:', test_dict['y'].shape)
    print('Output Shape:', model.layers[-1].output_shape)
    print('Number of Classes:', n_classes)

    def loss_function(y_true, y_pred):
        if isinstance(transform, str) and transform.lower() == 'disc':
            return losses.discriminative_instance_loss(y_true, y_pred)
        if focal:
            return losses.weighted_focal_loss(y_true,
                                              y_pred,
                                              gamma=gamma,
                                              n_classes=n_classes)
        return losses.weighted_categorical_crossentropy(y_true,
                                                        y_pred,
                                                        n_classes=n_classes)

    if num_gpus is None:
        num_gpus = train_utils.count_gpus()

    if num_gpus >= 2:
        batch_size = batch_size * num_gpus
        model = train_utils.MultiGpuModel(model, num_gpus)

    print('Training on {} GPUs'.format(num_gpus))

    model.compile(loss=loss_function,
                  optimizer=optimizer,
                  metrics=['accuracy'])

    if train_dict['X'].ndim == 4:
        DataGenerator = image_generators.SampleDataGenerator
        window_size = window_size if window_size else (30, 30)
    elif train_dict['X'].ndim == 5:
        DataGenerator = image_generators.SampleMovieDataGenerator
        window_size = window_size if window_size else (30, 30, 3)
    else:
        raise ValueError('Expected `X` to have ndim 4 or 5. Got',
                         train_dict['X'].ndim)

    # this will do preprocessing and realtime data augmentation
    datagen = DataGenerator(rotation_range=rotation_range,
                            shear_range=shear,
                            zoom_range=zoom_range,
                            horizontal_flip=flip,
                            vertical_flip=flip)

    # no validation augmentation
    datagen_val = DataGenerator(rotation_range=0,
                                shear_range=0,
                                zoom_range=0,
                                horizontal_flip=0,
                                vertical_flip=0)

    train_data = datagen.flow(train_dict,
                              batch_size=batch_size,
                              transform=transform,
                              transform_kwargs=kwargs,
                              window_size=window_size,
                              balance_classes=balance_classes,
                              max_class_samples=max_class_samples)

    val_data = datagen_val.flow(test_dict,
                                batch_size=batch_size,
                                transform=transform,
                                transform_kwargs=kwargs,
                                window_size=window_size,
                                balance_classes=False,
                                max_class_samples=max_class_samples)

    # fit the model on the batches generated by datagen.flow()
    loss_history = model.fit_generator(
        train_data,
        steps_per_epoch=train_data.y.shape[0] // batch_size,
        epochs=n_epoch,
        validation_data=val_data,
        validation_steps=val_data.y.shape[0] // batch_size,
        callbacks=[
            callbacks.LearningRateScheduler(lr_sched),
            callbacks.ModelCheckpoint(model_path,
                                      monitor='val_loss',
                                      verbose=1,
                                      save_best_only=True,
                                      save_weights_only=num_gpus >= 2),
            callbacks.TensorBoard(log_dir=os.path.join(log_dir, model_name))
        ])

    np.savez(loss_path, loss_history=loss_history.history)

    return model
Esempio n. 8
0
def train_model_siamese_daughter(model,
                                 dataset,
                                 expt='',
                                 test_size=.1,
                                 n_epoch=100,
                                 batch_size=1,
                                 num_gpus=None,
                                 crop_dim=32,
                                 min_track_length=1,
                                 neighborhood_scale_size=10,
                                 features=None,
                                 optimizer=SGD(lr=0.01,
                                               decay=1e-6,
                                               momentum=0.9,
                                               nesterov=True),
                                 log_dir='/data/tensorboard_logs',
                                 model_dir='/data/models',
                                 model_name=None,
                                 focal=False,
                                 gamma=0.5,
                                 lr_sched=rate_scheduler(lr=0.01, decay=0.95),
                                 rotation_range=0,
                                 flip=True,
                                 shear=0,
                                 zoom_range=0,
                                 seed=None,
                                 **kwargs):
    is_channels_first = K.image_data_format() == 'channels_first'

    if model_name is None:
        todays_date = datetime.datetime.now().strftime('%Y-%m-%d')
        data_name = os.path.splitext(os.path.basename(dataset))[0]
        model_name = '{}_{}_[{}]_neighs={}_epochs={}_seed={}_{}'.format(
            todays_date, data_name, ','.join(f[0] for f in sorted(features)),
            neighborhood_scale_size, n_epoch, seed, expt)
    model_path = os.path.join(model_dir, '{}.h5'.format(model_name))
    loss_path = os.path.join(model_dir, '{}.npz'.format(model_name))

    print('training on dataset:', dataset)
    print('saving model at:', model_path)
    print('saving loss at:', loss_path)

    train_dict, val_dict = get_data(dataset,
                                    mode='siamese_daughters',
                                    seed=seed,
                                    test_size=test_size)

    # the data, shuffled and split between train and test sets
    print('X_train shape:', train_dict['X'].shape)
    print('y_train shape:', train_dict['y'].shape)
    print('X_test shape:', val_dict['X'].shape)
    print('y_test shape:', val_dict['y'].shape)
    print('Output Shape:', model.layers[-1].output_shape)

    n_classes = model.layers[-1].output_shape[1 if is_channels_first else -1]

    def loss_function(y_true, y_pred):
        if focal:
            return losses.weighted_focal_loss(y_true,
                                              y_pred,
                                              gamma=gamma,
                                              n_classes=n_classes,
                                              from_logits=False)
        return losses.weighted_categorical_crossentropy(y_true,
                                                        y_pred,
                                                        n_classes=n_classes,
                                                        from_logits=False)

    if num_gpus is None:
        num_gpus = train_utils.count_gpus()

    if num_gpus >= 2:
        batch_size = batch_size * num_gpus
        model = train_utils.MultiGpuModel(model, num_gpus)

    print('Training on {} GPUs'.format(num_gpus))

    model.compile(loss=loss_function,
                  optimizer=optimizer,
                  metrics=['accuracy'])

    print('Using real-time data augmentation.')

    # this will do preprocessing and realtime data augmentation
    datagen = image_generators.SiameseDataGenerator(
        rotation_range=rotation_range,
        shear_range=shear,
        zoom_range=zoom_range,
        horizontal_flip=flip,
        vertical_flip=flip)

    datagen_val = image_generators.SiameseDataGenerator(rotation_range=0,
                                                        zoom_range=0,
                                                        shear_range=0,
                                                        horizontal_flip=0,
                                                        vertical_flip=0)

    total_train_pairs = tracking_utils.count_pairs(train_dict['y'],
                                                   same_probability=5.0)
    total_test_pairs = tracking_utils.count_pairs(val_dict['y'],
                                                  same_probability=5.0)

    train_data = datagen.flow(train_dict,
                              crop_dim=crop_dim,
                              batch_size=batch_size,
                              min_track_length=min_track_length,
                              neighborhood_scale_size=neighborhood_scale_size,
                              features=features)

    val_data = datagen_val.flow(
        val_dict,
        crop_dim=crop_dim,
        batch_size=batch_size,
        min_track_length=min_track_length,
        neighborhood_scale_size=neighborhood_scale_size,
        features=features)

    print('total_train_pairs:', total_train_pairs)
    print('total_test_pairs:', total_test_pairs)
    print('batch size:', batch_size)
    print('validation_steps: ', total_test_pairs // batch_size)

    # fit the model on the batches generated by datagen.flow()
    loss_history = model.fit_generator(
        train_data,
        steps_per_epoch=total_train_pairs // batch_size,
        epochs=n_epoch,
        validation_data=val_data,
        validation_steps=total_test_pairs // batch_size,
        callbacks=[
            callbacks.LearningRateScheduler(lr_sched),
            callbacks.ModelCheckpoint(model_path,
                                      monitor='val_loss',
                                      verbose=1,
                                      save_best_only=True,
                                      save_weights_only=num_gpus >= 2),
            callbacks.TensorBoard(log_dir=os.path.join(log_dir, model_name))
        ])

    model.save_weights(model_path)
    np.savez(loss_path, loss_history=loss_history.history)

    return model
Esempio n. 9
0
def train_model_sample(model,
                       dataset,
                       expt='',
                       test_size=.2,
                       n_epoch=10,
                       batch_size=32,
                       num_gpus=None,
                       transform=None,
                       window_size=None,
                       balance_classes=True,
                       max_class_samples=None,
                       log_dir='/data/tensorboard_logs',
                       model_dir='/data/models',
                       model_name=None,
                       focal=False,
                       gamma=0.5,
                       optimizer=SGD(lr=0.01,
                                     decay=1e-6,
                                     momentum=0.9,
                                     nesterov=True),
                       lr_sched=rate_scheduler(lr=0.01, decay=0.95),
                       rotation_range=0,
                       flip=False,
                       shear=0,
                       zoom_range=0,
                       seed=0,
                       **kwargs):
    """Train a model using sample mode.

    Args:
        model (tensorflow.keras.Model): The model to train.
        dataset (str): Path to a dataset to train the model with.
        expt (str): Experiment, substring to include in model name.
        test_size (float): Percent of data to leave as test data.
        n_epoch (int): Number of training epochs.
        batch_size (int): Number of batches per training step.
        num_gpus (int): The number of GPUs to train on.
        transform (str): Defines the transformation of the training data.
            One of 'watershed', 'fgbg', 'pixelwise'.
        window_size (tuple(int, int)): Size of sampling window
        balance_classes (bool): Whether to perform class-balancing on data
        max_class_samples (int): Maximum number of examples per class to sample
        log_dir (str): Filepath to save tensorboard logs. If None, disables
            the tensorboard callback.
        model_dir (str): Directory to save the model file.
        model_name (str): Name of the model (and name of output file).
        focal (bool): If true, uses focal loss.
        gamma (float): Parameter for focal loss
        optimizer (object): Pre-initialized optimizer object (SGD, Adam, etc.)
        lr_sched (function): Learning rate schedular function
        rotation_range (int): Maximum rotation range for image augmentation
        flip (bool): Enables horizontal and vertical flipping for augmentation
        shear (int): Maximum rotation range for image augmentation
        zoom_range (tuple): Minimum and maximum zoom values (0.8, 1.2)
        seed (int): Random seed
        kwargs (dict): Other parameters to pass to _transform_masks

    Returns:
        tensorflow.keras.Model: The trained model
    """
    is_channels_first = K.image_data_format() == 'channels_first'

    if model_name is None:
        todays_date = datetime.datetime.now().strftime('%Y-%m-%d')
        data_name = os.path.splitext(os.path.basename(dataset))[0]
        model_name = '{}_{}_{}'.format(todays_date, data_name, expt)
    model_path = os.path.join(model_dir, '{}.h5'.format(model_name))
    loss_path = os.path.join(model_dir, '{}.npz'.format(model_name))

    train_dict, test_dict = get_data(dataset, test_size=test_size, seed=seed)

    n_classes = model.layers[-1].output_shape[1 if is_channels_first else -1]

    # the data, shuffled and split between train and test sets
    print('X_train shape:', train_dict['X'].shape)
    print('y_train shape:', train_dict['y'].shape)
    print('X_test shape:', test_dict['X'].shape)
    print('y_test shape:', test_dict['y'].shape)
    print('Output Shape:', model.layers[-1].output_shape)
    print('Number of Classes:', n_classes)

    def loss_function(y_true, y_pred):
        if isinstance(transform, str) and transform.lower() == 'disc':
            return losses.discriminative_instance_loss(y_true, y_pred)
        if focal:
            return losses.weighted_focal_loss(y_true,
                                              y_pred,
                                              gamma=gamma,
                                              n_classes=n_classes)
        return losses.weighted_categorical_crossentropy(y_true,
                                                        y_pred,
                                                        n_classes=n_classes)

    if num_gpus is None:
        num_gpus = train_utils.count_gpus()

    print('Training on {} GPUs'.format(num_gpus))

    model.compile(loss=loss_function,
                  optimizer=optimizer,
                  metrics=['accuracy'])

    if train_dict['X'].ndim == 4:
        DataGenerator = image_generators.SampleDataGenerator
        window_size = window_size if window_size else (30, 30)
    elif train_dict['X'].ndim == 5:
        DataGenerator = image_generators.SampleMovieDataGenerator
        window_size = window_size if window_size else (30, 30, 3)
    else:
        raise ValueError('Expected `X` to have ndim 4 or 5. Got',
                         train_dict['X'].ndim)

    # this will do preprocessing and realtime data augmentation
    datagen = DataGenerator(rotation_range=rotation_range,
                            shear_range=shear,
                            zoom_range=zoom_range,
                            horizontal_flip=flip,
                            vertical_flip=flip)

    # no validation augmentation
    datagen_val = DataGenerator(rotation_range=0,
                                shear_range=0,
                                zoom_range=0,
                                horizontal_flip=0,
                                vertical_flip=0)

    train_data = datagen.flow(train_dict,
                              seed=seed,
                              batch_size=batch_size,
                              transform=transform,
                              transform_kwargs=kwargs,
                              window_size=window_size,
                              balance_classes=balance_classes,
                              max_class_samples=max_class_samples)

    val_data = datagen_val.flow(test_dict,
                                seed=seed,
                                batch_size=batch_size,
                                transform=transform,
                                transform_kwargs=kwargs,
                                window_size=window_size,
                                balance_classes=False,
                                max_class_samples=max_class_samples)

    train_callbacks = get_callbacks(model_path,
                                    lr_sched=lr_sched,
                                    tensorboard_log_dir=log_dir,
                                    save_weights_only=num_gpus >= 2,
                                    monitor='val_loss',
                                    verbose=1)

    # fit the model on the batches generated by datagen.flow()
    loss_history = model.fit(
        train_data,
        steps_per_epoch=train_data.y.shape[0] // batch_size,
        epochs=n_epoch,
        validation_data=val_data,
        validation_steps=val_data.y.shape[0] // batch_size,
        callbacks=train_callbacks)

    np.savez(loss_path, loss_history=loss_history.history)

    return model
Esempio n. 10
0
def train_model_siamese_daughter(model,
                                 dataset,
                                 expt='',
                                 test_size=.2,
                                 n_epoch=100,
                                 batch_size=1,
                                 num_gpus=None,
                                 crop_dim=32,
                                 min_track_length=1,
                                 neighborhood_scale_size=10,
                                 features=None,
                                 optimizer=SGD(lr=0.01,
                                               decay=1e-6,
                                               momentum=0.9,
                                               nesterov=True),
                                 log_dir='/data/tensorboard_logs',
                                 model_dir='/data/models',
                                 model_name=None,
                                 focal=False,
                                 gamma=0.5,
                                 lr_sched=rate_scheduler(lr=0.01, decay=0.95),
                                 rotation_range=0,
                                 flip=True,
                                 shear=0,
                                 zoom_range=0,
                                 seed=0,
                                 **kwargs):
    is_channels_first = K.image_data_format() == 'channels_first'

    if model_name is None:
        todays_date = datetime.datetime.now().strftime('%Y-%m-%d')
        data_name = os.path.splitext(os.path.basename(dataset))[0]
        model_name = '{}_{}_[{}]_neighs={}_epochs={}_seed={}_{}'.format(
            todays_date, data_name, ','.join(f[0] for f in sorted(features)),
            neighborhood_scale_size, n_epoch, seed, expt)
    model_path = os.path.join(model_dir, '{}.h5'.format(model_name))
    loss_path = os.path.join(model_dir, '{}.npz'.format(model_name))

    print('training on dataset:', dataset)
    print('saving model at:', model_path)
    print('saving loss at:', loss_path)

    train_dict, val_dict = get_data(dataset,
                                    mode='siamese_daughters',
                                    seed=seed,
                                    test_size=test_size)

    # the data, shuffled and split between train and test sets
    print('X_train shape:', train_dict['X'].shape)
    print('y_train shape:', train_dict['y'].shape)
    print('X_test shape:', val_dict['X'].shape)
    print('y_test shape:', val_dict['y'].shape)
    print('Output Shape:', model.layers[-1].output_shape)

    n_classes = model.layers[-1].output_shape[1 if is_channels_first else -1]

    def loss_function(y_true, y_pred):
        if focal:
            return losses.weighted_focal_loss(y_true,
                                              y_pred,
                                              gamma=gamma,
                                              n_classes=n_classes,
                                              from_logits=False)
        return losses.weighted_categorical_crossentropy(y_true,
                                                        y_pred,
                                                        n_classes=n_classes,
                                                        from_logits=False)

    if num_gpus is None:
        num_gpus = train_utils.count_gpus()

    print('Training on {} GPUs'.format(num_gpus))

    model.compile(loss=loss_function,
                  optimizer=optimizer,
                  metrics=['accuracy'])

    print('Using real-time data augmentation.')

    # this will do preprocessing and realtime data augmentation
    datagen = image_generators.SiameseDataGenerator(
        rotation_range=rotation_range,
        shear_range=shear,
        zoom_range=zoom_range,
        horizontal_flip=flip,
        vertical_flip=flip)

    datagen_val = image_generators.SiameseDataGenerator(rotation_range=0,
                                                        zoom_range=0,
                                                        shear_range=0,
                                                        horizontal_flip=0,
                                                        vertical_flip=0)

    # same_probability values have varied from 0.5 to 5.0
    total_train_pairs = tracking_utils.count_pairs(train_dict['y'],
                                                   same_probability=5.0)
    total_test_pairs = tracking_utils.count_pairs(val_dict['y'],
                                                  same_probability=5.0)

    train_data = datagen.flow(train_dict,
                              seed=seed,
                              crop_dim=crop_dim,
                              batch_size=batch_size,
                              min_track_length=min_track_length,
                              neighborhood_scale_size=neighborhood_scale_size,
                              features=features)

    val_data = datagen_val.flow(
        val_dict,
        seed=seed,
        crop_dim=crop_dim,
        batch_size=batch_size,
        min_track_length=min_track_length,
        neighborhood_scale_size=neighborhood_scale_size,
        features=features)

    print('total_train_pairs:', total_train_pairs)
    print('total_test_pairs:', total_test_pairs)
    print('batch size:', batch_size)
    print('validation_steps: ', total_test_pairs // batch_size)

    # Make dicts to map the two generator outputs to the Dataset and model
    # input here is model input and output is model output
    features = sorted(features)

    input_type_dict = {}
    input_shape_dict = {}
    for feature in features:

        feature_name1 = '{}_input1'.format(feature)
        feature_name2 = '{}_input2'.format(feature)

        input_type_dict[feature_name1] = tf.float32
        input_type_dict[feature_name2] = tf.float32

        if feature == 'appearance':
            app1 = tuple([
                None, train_data.min_track_length, train_data.crop_dim,
                train_data.crop_dim, 1
            ])
            app2 = tuple(
                [None, 1, train_data.crop_dim, train_data.crop_dim, 1])

            input_shape_dict[feature_name1] = app1
            input_shape_dict[feature_name2] = app2

        elif feature == 'distance':
            dist1 = tuple([None, train_data.min_track_length, 2])
            dist2 = tuple([None, 1, 2])

            input_shape_dict[feature_name1] = dist1
            input_shape_dict[feature_name2] = dist2

        elif feature == 'neighborhood':
            neighborhood_size = 2 * train_data.neighborhood_scale_size + 1
            neigh1 = tuple([
                None, train_data.min_track_length, neighborhood_size,
                neighborhood_size, 1
            ])
            neigh2 = tuple([None, 1, neighborhood_size, neighborhood_size, 1])

            input_shape_dict[feature_name1] = neigh1
            input_shape_dict[feature_name2] = neigh2

        elif feature == 'regionprop':
            rprop1 = tuple([None, train_data.min_track_length, 3])
            rprop2 = tuple([None, 1, 3])

            input_shape_dict[feature_name1] = rprop1
            input_shape_dict[feature_name2] = rprop2

    output_type_dict = {'classification': tf.int32}
    # Ouput_shape has to be None because we dont know how many cells
    output_shape_dict = {'classification': (None, 3)}

    train_dataset = Dataset.from_generator(lambda: train_data,
                                           (input_type_dict, output_type_dict),
                                           output_shapes=(input_shape_dict,
                                                          output_shape_dict))
    val_dataset = Dataset.from_generator(lambda: val_data,
                                         (input_type_dict, output_type_dict),
                                         output_shapes=(input_shape_dict,
                                                        output_shape_dict))

    train_callbacks = get_callbacks(model_path,
                                    lr_sched=lr_sched,
                                    tensorboard_log_dir=log_dir,
                                    save_weights_only=num_gpus >= 2,
                                    monitor='val_loss',
                                    verbose=1)

    # fit the model on the batches generated by datagen.flow()
    loss_history = model.fit(train_dataset,
                             steps_per_epoch=total_train_pairs // batch_size,
                             epochs=n_epoch,
                             validation_data=val_dataset,
                             validation_steps=total_test_pairs // batch_size,
                             callbacks=train_callbacks)

    np.savez(loss_path, loss_history=loss_history.history)

    return model
Esempio n. 11
0
def train_model_retinanet(model,
                          dataset,
                          backbone,
                          expt='',
                          test_size=.1,
                          n_epoch=10,
                          batch_size=1,
                          num_gpus=None,
                          include_masks=False,
                          panoptic=False,
                          panoptic_weight=1,
                          anchor_params=None,
                          pyramid_levels=['P3', 'P4', 'P5', 'P6', 'P7'],
                          mask_size=(28, 28),
                          optimizer=SGD(lr=0.01,
                                        decay=1e-6,
                                        momentum=0.9,
                                        nesterov=True),
                          log_dir='/data/tensorboard_logs',
                          model_dir='/data/models',
                          model_name=None,
                          sigma=3.0,
                          alpha=0.25,
                          gamma=2.0,
                          score_threshold=0.01,
                          iou_threshold=0.5,
                          max_detections=100,
                          weighted_average=True,
                          lr_sched=rate_scheduler(lr=0.01, decay=0.95),
                          rotation_range=0,
                          flip=True,
                          shear=0,
                          zoom_range=0,
                          seed=None,
                          **kwargs):
    """Train a RetinaNet model from the given backbone

    Adapted from:
        https://github.com/fizyr/keras-retinanet &
        https://github.com/fizyr/keras-maskrcnn
    """

    is_channels_first = K.image_data_format() == 'channels_first'

    if model_name is None:
        todays_date = datetime.datetime.now().strftime('%Y-%m-%d')
        data_name = os.path.splitext(os.path.basename(dataset))[0]
        model_name = '{}_{}_{}'.format(todays_date, data_name, expt)

    model_path = os.path.join(model_dir, '{}.h5'.format(model_name))
    loss_path = os.path.join(model_dir, '{}.npz'.format(model_name))

    train_dict, test_dict = get_data(dataset, seed=seed, test_size=test_size)

    channel_axis = 1 if is_channels_first else -1
    n_classes = model.layers[-1].output_shape[channel_axis]

    if panoptic:
        n_semantic_classes = model.get_layer(
            name='semantic').output_shape[channel_axis]

    # the data, shuffled and split between train and test sets
    print('X_train shape:', train_dict['X'].shape)
    print('y_train shape:', train_dict['y'].shape)
    print('X_test shape:', test_dict['X'].shape)
    print('y_test shape:', test_dict['y'].shape)
    print('Output Shape:', model.layers[-1].output_shape)
    print('Number of Classes:', n_classes)

    if num_gpus is None:
        num_gpus = train_utils.count_gpus()

    if num_gpus >= 1e6:
        batch_size = batch_size * num_gpus
        model = train_utils.MultiGpuModel(model, num_gpus)

    print('Training on {} GPUs'.format(num_gpus))

    # evaluation of model is done on `retinanet_bbox`
    if include_masks:
        prediction_model = model
    else:
        prediction_model = retinanet_bbox(model,
                                          nms=True,
                                          anchor_params=anchor_params,
                                          panoptic=panoptic,
                                          class_specific_filter=False)

    retinanet_losses = losses.RetinaNetLosses(sigma=sigma,
                                              alpha=alpha,
                                              gamma=gamma,
                                              iou_threshold=iou_threshold,
                                              mask_size=mask_size)

    def semantic_loss(y_pred, y_true):
        return panoptic_weight * losses.weighted_categorical_crossentropy(
            y_pred, y_true, n_classes=n_semantic_classes)

    loss = {
        'regression': retinanet_losses.regress_loss,
        'classification': retinanet_losses.classification_loss
    }

    if include_masks:
        loss['masks'] = retinanet_losses.mask_loss

    if panoptic:
        loss['semantic'] = semantic_loss

    model.compile(loss=loss, optimizer=optimizer)

    if num_gpus >= 2:
        # Each GPU must have at least one validation example
        if test_dict['y'].shape[0] < num_gpus:
            raise ValueError('Not enough validation data for {} GPUs. '
                             'Received {} validation sample.'.format(
                                 test_dict['y'].shape[0], num_gpus))

        # When using multiple GPUs and skip_connections,
        # the training data must be evenly distributed across all GPUs
        num_train = train_dict['y'].shape[0]
        nb_samples = num_train - num_train % batch_size
        if nb_samples:
            train_dict['y'] = train_dict['y'][:nb_samples]
            train_dict['X'] = train_dict['X'][:nb_samples]

    # this will do preprocessing and realtime data augmentation
    datagen = image_generators.RetinaNetGenerator(
        # fill_mode='constant',  # for rotations
        rotation_range=rotation_range,
        shear_range=shear,
        zoom_range=zoom_range,
        horizontal_flip=flip,
        vertical_flip=flip)

    datagen_val = image_generators.RetinaNetGenerator(
        # fill_mode='constant',  # for rotations
        rotation_range=0,
        shear_range=0,
        zoom_range=0,
        horizontal_flip=0,
        vertical_flip=0)

    if 'vgg' in backbone or 'densenet' in backbone:
        compute_shapes = make_shapes_callback(model)
    else:
        compute_shapes = guess_shapes

    train_data = datagen.flow(train_dict,
                              seed=seed,
                              include_masks=include_masks,
                              panoptic=panoptic,
                              pyramid_levels=pyramid_levels,
                              anchor_params=anchor_params,
                              compute_shapes=compute_shapes,
                              batch_size=batch_size)

    val_data = datagen_val.flow(test_dict,
                                seed=seed,
                                include_masks=include_masks,
                                panoptic=panoptic,
                                pyramid_levels=pyramid_levels,
                                anchor_params=anchor_params,
                                compute_shapes=compute_shapes,
                                batch_size=batch_size)

    tensorboard_callback = callbacks.TensorBoard(
        log_dir=os.path.join(log_dir, model_name))

    # fit the model on the batches generated by datagen.flow()
    loss_history = model.fit_generator(
        train_data,
        steps_per_epoch=train_data.y.shape[0] // batch_size,
        epochs=n_epoch,
        validation_data=val_data,
        validation_steps=val_data.y.shape[0] // batch_size,
        callbacks=[
            callbacks.LearningRateScheduler(lr_sched),
            callbacks.ModelCheckpoint(model_path,
                                      monitor='val_loss',
                                      verbose=1,
                                      save_best_only=True,
                                      save_weights_only=num_gpus >= 2),
            tensorboard_callback,
            callbacks.ReduceLROnPlateau(monitor='loss',
                                        factor=0.1,
                                        patience=10,
                                        verbose=1,
                                        mode='auto',
                                        min_delta=0.0001,
                                        cooldown=0,
                                        min_lr=0),
            RedirectModel(
                Evaluate(val_data,
                         iou_threshold=iou_threshold,
                         score_threshold=score_threshold,
                         max_detections=max_detections,
                         tensorboard=tensorboard_callback,
                         weighted_average=weighted_average), prediction_model),
        ])

    model.save_weights(model_path)
    np.savez(loss_path, loss_history=loss_history.history)

    average_precisions = evaluate(
        val_data,
        prediction_model,
        iou_threshold=iou_threshold,
        score_threshold=score_threshold,
        max_detections=max_detections,
    )

    # print evaluation
    total_instances = []
    precisions = []
    for label, (average_precision,
                num_annotations) in average_precisions.items():
        print('{:.0f} instances of class'.format(num_annotations), label,
              'with average precision: {:.4f}'.format(average_precision))
        total_instances.append(num_annotations)
        precisions.append(average_precision)

    if sum(total_instances) == 0:
        print('No test instances found.')
    else:
        print(
            'mAP using the weighted average of precisions among classes: {:.4f}'
            .format(
                sum([a * b for a, b in zip(total_instances, precisions)]) /
                sum(total_instances)))
        print('mAP: {:.4f}'.format(
            sum(precisions) / sum(x > 0 for x in total_instances)))

    return model
Esempio n. 12
0
def train_model_siamese(model=None,
                        dataset=None,
                        optimizer=None,
                        expt='',
                        it=0,
                        batch_size=1,
                        n_epoch=100,
                        direc_save='/data/models',
                        direc_data='/data/npz_data',
                        focal=False,
                        gamma=0.5,
                        lr_sched=rate_scheduler(lr=0.01, decay=0.95),
                        rotation_range=0,
                        flip=True,
                        shear=0,
                        class_weight=None):
    is_channels_first = K.image_data_format() == 'channels_first'
    training_data_file_name = os.path.join(direc_data, dataset + '.npz')
    todays_date = datetime.datetime.now().strftime('%Y-%m-%d')

    file_name_save = os.path.join(
        direc_save, '{}_{}_{}_{}.h5'.format(todays_date, dataset, expt, it))
    file_name_save_loss = os.path.join(
        direc_save, '{}_{}_{}_{}.npz'.format(todays_date, dataset, expt, it))

    train_dict, test_dict = get_data(training_data_file_name, mode='siamese')

    class_weights = train_dict['class_weights']
    # the data, shuffled and split between train and test sets
    print('X_train shape:', train_dict['X'].shape)
    print('y_train shape:', train_dict['y'].shape)
    print('X_test shape:', test_dict['X'].shape)
    print('y_test shape:', test_dict['y'].shape)
    print('Output Shape:', model.layers[-1].output_shape)

    n_classes = model.layers[-1].output_shape[1 if is_channels_first else -1]

    def loss_function(y_true, y_pred):
        if focal:
            return losses.weighted_focal_loss(y_true,
                                              y_pred,
                                              gamma=gamma,
                                              n_classes=n_classes,
                                              from_logits=False)
        else:
            return losses.weighted_categorical_crossentropy(
                y_true, y_pred, n_classes=n_classes, from_logits=False)

    model.compile(loss=loss_function,
                  optimizer=optimizer,
                  metrics=['accuracy'])

    print('Using real-time data augmentation.')

    # this will do preprocessing and realtime data augmentation
    datagen = generators.SiameseDataGenerator(
        rotation_range=
        rotation_range,  # randomly rotate images by 0 to rotation_range degrees
        shear_range=
        shear,  # randomly shear images in the range (radians , -shear_range to shear_range)
        horizontal_flip=flip,  # randomly flip images
        vertical_flip=flip)  # randomly flip images

    datagen_val = generators.SiameseDataGenerator(
        rotation_range=
        0,  # randomly rotate images by 0 to rotation_range degrees
        shear_range=
        0,  # randomly shear images in the range (radians , -shear_range to shear_range)
        horizontal_flip=0,  # randomly flip images
        vertical_flip=0)  # randomly flip images

    def count_pairs(y):
        """
        Compute number of training samples needed to (stastically speaking)
        observe all cell pairs.
        Assume that the number of images is encoded in the second dimension.
        Assume that y values are a cell-uniquely-labeled mask.
        Assume that a cell is paired with one of its other frames 50% of the time
        and a frame from another cell 50% of the time.
        """
        # TODO: channels_first axes
        total_pairs = 0
        for image_set in range(y.shape[0]):
            set_cells = 0
            cells_per_image = []
            for image in range(y.shape[1]):
                image_cells = int(y[image_set, image, :, :, :].max())
                set_cells = set_cells + image_cells
                cells_per_image.append(image_cells)

            # Since there are many more possible non-self pairings than there are self pairings,
            # we want to estimate the number of possible non-self pairings and then multiply
            # that number by two, since the odds of getting a non-self pairing are 50%, to
            # find out how many pairs we would need to sample to (statistically speaking)
            # observe all possible cell-frame pairs.
            # We're going to assume that the average cell is present in every frame. This will
            # lead to an underestimate of the number of possible non-self pairings, but it's
            # unclear how significant the underestimate is.
            average_cells_per_frame = int(
                sum(cells_per_image) / len(cells_per_image))
            non_self_cellframes = (average_cells_per_frame -
                                   1) * len(cells_per_image)
            non_self_pairings = non_self_cellframes * max(cells_per_image)
            cell_pairings = non_self_pairings * 2
            total_pairs = total_pairs + cell_pairings
        return total_pairs

    # This shouldn't remain long term.
    magic_number = 2048  # A power of 2 chosen just to reduce training time.
    total_train_pairs = count_pairs(train_dict['y'])
    total_train_pairs = int(total_train_pairs // magic_number)

    total_test_pairs = count_pairs(test_dict['y'])
    total_test_pairs = int(total_test_pairs // magic_number)

    # fit the model on the batches generated by datagen.flow()
    loss_history = model.fit_generator(
        datagen.flow(train_dict, batch_size=batch_size),
        steps_per_epoch=total_train_pairs // batch_size,
        epochs=n_epoch,
        validation_data=datagen_val.flow(test_dict, batch_size=batch_size),
        validation_steps=total_test_pairs // batch_size,
        callbacks=[
            callbacks.LearningRateScheduler(lr_sched),
            callbacks.ModelCheckpoint(file_name_save,
                                      monitor='val_loss',
                                      verbose=1,
                                      save_best_only=True,
                                      save_weights_only=num_gpus >= 2),
        ])

    model.save_weights(file_name_save)
    np.savez(file_name_save_loss, loss_history=loss_history.history)

    return model
Esempio n. 13
0
def train_model_conv(model,
                     dataset,
                     expt='',
                     test_size=.1,
                     n_epoch=10,
                     batch_size=1,
                     num_gpus=None,
                     frames_per_batch=5,
                     transform=None,
                     optimizer=SGD(lr=0.01,
                                   decay=1e-6,
                                   momentum=0.9,
                                   nesterov=True),
                     log_dir='/data/tensorboard_logs',
                     direc_save='/data/models',
                     direc_data='/data/npz_data',
                     focal=False,
                     gamma=0.5,
                     lr_sched=rate_scheduler(lr=0.01, decay=0.95),
                     rotation_range=0,
                     flip=True,
                     shear=0,
                     zoom_range=0,
                     **kwargs):
    is_channels_first = K.image_data_format() == 'channels_first'

    todays_date = datetime.datetime.now().strftime('%Y-%m-%d')
    basename = '{}_{}_{}'.format(todays_date, dataset, expt)
    file_name_save = os.path.join(direc_save, '{}.h5'.format(basename))
    file_name_save_loss = os.path.join(direc_save, '{}.npz'.format(basename))

    training_data_file_name = os.path.join(direc_data, dataset + '.npz')
    train_dict, test_dict = get_data(training_data_file_name,
                                     mode='conv',
                                     test_size=test_size)

    n_classes = model.layers[-1].output_shape[1 if is_channels_first else -1]
    # the data, shuffled and split between train and test sets
    print('X_train shape:', train_dict['X'].shape)
    print('y_train shape:', train_dict['y'].shape)
    print('X_test shape:', test_dict['X'].shape)
    print('y_test shape:', test_dict['y'].shape)
    print('Output Shape:', model.layers[-1].output_shape)
    print('Number of Classes:', n_classes)

    def loss_function(y_true, y_pred):
        if isinstance(transform, str) and transform.lower() == 'disc':
            return losses.discriminative_instance_loss(y_true, y_pred)
        if focal:
            return losses.weighted_focal_loss(y_true,
                                              y_pred,
                                              gamma=gamma,
                                              n_classes=n_classes)
        return losses.weighted_categorical_crossentropy(y_true,
                                                        y_pred,
                                                        n_classes=n_classes)

    if num_gpus is None:
        devices = device_lib.list_local_devices()
        gpus = [d for d in devices if d.name.lower().startswith('/device:gpu')]
        num_gpus = len(gpus)

    if num_gpus >= 2:
        batch_size = batch_size * num_gpus
        model = MultiGpuModel(model, num_gpus)

    print('Training on {} GPUs'.format(num_gpus))

    model.compile(loss=loss_function,
                  optimizer=optimizer,
                  metrics=['accuracy'])

    if isinstance(model.output_shape, list):
        skip = len(model.output_shape) - 1
    else:
        skip = None

    if train_dict['X'].ndim == 4:
        DataGenerator = generators.ImageFullyConvDataGenerator
    elif train_dict['X'].ndim == 5:
        DataGenerator = generators.MovieDataGenerator
    else:
        raise ValueError('Expected `X` to have ndim 4 or 5. Got',
                         train_dict['X'].ndim)

    if num_gpus >= 2:
        # Each GPU must have at least one validation example
        if test_dict['y'].shape[0] < num_gpus:
            raise ValueError('Not enough validation data for {} GPUs. '
                             'Received {} validation sample.'.format(
                                 test_dict['y'].shape[0], num_gpus))

        # When using multiple GPUs and skip_connections,
        # the training data must be evenly distributed across all GPUs
        num_train = train_dict['y'].shape[0]
        nb_samples = num_train - num_train % batch_size
        if nb_samples:
            train_dict['y'] = train_dict['y'][:nb_samples]
            train_dict['X'] = train_dict['X'][:nb_samples]

    # this will do preprocessing and realtime data augmentation
    datagen = DataGenerator(rotation_range=rotation_range,
                            shear_range=shear,
                            zoom_range=zoom_range,
                            horizontal_flip=flip,
                            vertical_flip=flip)

    datagen_val = DataGenerator(rotation_range=0,
                                shear_range=0,
                                zoom_range=0,
                                horizontal_flip=0,
                                vertical_flip=0)

    if train_dict['X'].ndim == 5:
        train_data = datagen_val.flow(train_dict,
                                      skip=skip,
                                      batch_size=batch_size,
                                      transform=transform,
                                      transform_kwargs=kwargs,
                                      frames_per_batch=frames_per_batch)

        val_data = datagen_val.flow(test_dict,
                                    skip=skip,
                                    batch_size=batch_size,
                                    transform=transform,
                                    transform_kwargs=kwargs,
                                    frames_per_batch=frames_per_batch)
    else:
        train_data = datagen.flow(train_dict,
                                  skip=skip,
                                  batch_size=batch_size,
                                  transform=transform,
                                  transform_kwargs=kwargs)

        val_data = datagen_val.flow(test_dict,
                                    skip=skip,
                                    batch_size=batch_size,
                                    transform=transform,
                                    transform_kwargs=kwargs)

    # fit the model on the batches generated by datagen.flow()
    loss_history = model.fit_generator(
        train_data,
        steps_per_epoch=train_data.y.shape[0] // batch_size,
        epochs=n_epoch,
        validation_data=val_data,
        validation_steps=val_data.y.shape[0] // batch_size,
        callbacks=[
            callbacks.LearningRateScheduler(lr_sched),
            callbacks.ModelCheckpoint(file_name_save,
                                      monitor='val_loss',
                                      verbose=1,
                                      save_best_only=True,
                                      save_weights_only=num_gpus >= 2),
            callbacks.TensorBoard(log_dir=os.path.join(log_dir, basename))
        ])

    model.save_weights(file_name_save)
    np.savez(file_name_save_loss, loss_history=loss_history.history)

    return model
Esempio n. 14
0
def train_model_retinanet(model,
                          dataset,
                          expt='',
                          test_size=.2,
                          n_epoch=10,
                          batch_size=1,
                          num_gpus=None,
                          include_masks=False,
                          panoptic=False,
                          panoptic_weight=0.1,
                          transforms=['watershed'],
                          transforms_kwargs={},
                          anchor_params=None,
                          pyramid_levels=['P3', 'P4', 'P5', 'P6', 'P7'],
                          min_objects=3,
                          mask_size=(28, 28),
                          optimizer=SGD(lr=0.01,
                                        decay=1e-6,
                                        momentum=0.9,
                                        nesterov=True),
                          log_dir='/data/tensorboard_logs',
                          model_dir='/data/models',
                          model_name=None,
                          sigma=3.0,
                          alpha=0.25,
                          gamma=2.0,
                          score_threshold=0.01,
                          iou_threshold=0.5,
                          max_detections=100,
                          weighted_average=True,
                          lr_sched=rate_scheduler(lr=0.01, decay=0.95),
                          rotation_range=0,
                          flip=True,
                          shear=0,
                          zoom_range=0,
                          compute_map=True,
                          seed=0,
                          **kwargs):
    """Train a RetinaNet model from the given backbone.

    Adapted from:
        https://github.com/fizyr/keras-retinanet &
        https://github.com/fizyr/keras-maskrcnn

    Args:
        model (tensorflow.keras.Model): The model to train.
        dataset (str): Path to a dataset to train the model with.
        expt (str): Experiment, substring to include in model name.
        test_size (float): Percent of data to leave as test data.
        n_epoch (int): Number of training epochs.
        batch_size (int): Number of batches per training step.
        num_gpus (int): The number of GPUs to train on.
        include_masks (bool): Whether to generate masks using MaskRCNN.
        panoptic (bool): Whether to include semantic segmentation heads.
        panoptic_weight (float): Weight applied to the semantic loss.
        transforms (list): List of transform names as strings. Each transform
            will have its own semantic segmentation head.
        transforms_kwargs (list): List of dicts of optional values for each
            transform in transforms.
        anchor_params (AnchorParameters): Struct containing anchor parameters.
            If None, default values are used.
        pyramid_levels (list): Pyramid levels to attach
            the object detection heads to.
        min_objects (int): If a training image has fewer than min_objects
            objects, the image will not be used for training.
        mask_size (tuple): The size of the masks.
        log_dir (str): Filepath to save tensorboard logs. If None, disables
            the tensorboard callback.
        model_dir (str): Directory to save the model file.
        model_name (str): Name of the model (and name of output file).
        sigma (float): The point where the loss changes from L2 to L1.
        alpha (float): Scale the focal weight with alpha.
        gamma (float): Take the power of the focal weight with gamma.
        iou_threshold (float): The threshold used to consider when a detection
            is positive or negative.
        score_threshold (float): The score confidence threshold
            to use for detections.
        max_detections (int): The maximum number of detections to use per image
        weighted_average (bool): Use a weighted average in evaluation.
        optimizer (object): Pre-initialized optimizer object (SGD, Adam, etc.)
        lr_sched (function): Learning rate schedular function
        rotation_range (int): Maximum rotation range for image augmentation
        flip (bool): Enables horizontal and vertical flipping for augmentation
        shear (int): Maximum rotation range for image augmentation
        zoom_range (tuple): Minimum and maximum zoom values (0.8, 1.2)
        seed (int): Random seed
        compute_map (bool): Whether to compute mAP at end of training.
        kwargs (dict): Other parameters to pass to _transform_masks

    Returns:
        tensorflow.keras.Model: The trained model
    """

    is_channels_first = K.image_data_format() == 'channels_first'

    if model_name is None:
        todays_date = datetime.datetime.now().strftime('%Y-%m-%d')
        data_name = os.path.splitext(os.path.basename(dataset))[0]
        model_name = '{}_{}_{}'.format(todays_date, data_name, expt)

    model_path = os.path.join(model_dir, '{}.h5'.format(model_name))
    loss_path = os.path.join(model_dir, '{}.npz'.format(model_name))

    train_dict, test_dict = get_data(dataset, seed=seed, test_size=test_size)

    channel_axis = 1 if is_channels_first else -1
    n_classes = model.layers[-1].output_shape[channel_axis]

    if panoptic:
        n_semantic_classes = [
            layer.output_shape[channel_axis] for layer in model.layers
            if 'semantic' in layer.name
        ]
    else:
        n_semantic_classes = []

    # the data, shuffled and split between train and test sets
    print('X_train shape:', train_dict['X'].shape)
    print('y_train shape:', train_dict['y'].shape)
    print('X_test shape:', test_dict['X'].shape)
    print('y_test shape:', test_dict['y'].shape)
    print('Output Shape:', model.layers[-1].output_shape)
    print('Number of Classes:', n_classes)

    if num_gpus is None:
        num_gpus = train_utils.count_gpus()

    if num_gpus >= 1e6:
        batch_size = batch_size * num_gpus
        model = train_utils.MultiGpuModel(model, num_gpus)

    print('Training on {} GPUs'.format(num_gpus))

    # evaluation of model is done on `retinanet_bbox`
    if include_masks:
        prediction_model = model
    else:
        prediction_model = retinanet_bbox(
            model,
            nms=True,
            anchor_params=anchor_params,
            num_semantic_heads=len(n_semantic_classes),
            panoptic=panoptic,
            class_specific_filter=False)

    retinanet_losses = losses.RetinaNetLosses(sigma=sigma,
                                              alpha=alpha,
                                              gamma=gamma,
                                              iou_threshold=iou_threshold,
                                              mask_size=mask_size)

    def semantic_loss(n_classes):
        def _semantic_loss(y_pred, y_true):
            return panoptic_weight * losses.weighted_categorical_crossentropy(
                y_pred, y_true, n_classes=n_classes)

        return _semantic_loss

    loss = {
        'regression': retinanet_losses.regress_loss,
        'classification': retinanet_losses.classification_loss
    }

    if include_masks:
        loss['masks'] = retinanet_losses.mask_loss

    if panoptic:
        # Give losses for all of the semantic heads
        for layer in model.layers:
            if 'semantic' in layer.name:
                n_classes = layer.output_shape[channel_axis]
                loss[layer.name] = semantic_loss(n_classes)

    model.compile(loss=loss, optimizer=optimizer)

    if num_gpus >= 2:
        # Each GPU must have at least one validation example
        if test_dict['y'].shape[0] < num_gpus:
            raise ValueError('Not enough validation data for {} GPUs. '
                             'Received {} validation sample.'.format(
                                 test_dict['y'].shape[0], num_gpus))

        # When using multiple GPUs and skip_connections,
        # the training data must be evenly distributed across all GPUs
        num_train = train_dict['y'].shape[0]
        nb_samples = num_train - num_train % batch_size
        if nb_samples:
            train_dict['y'] = train_dict['y'][:nb_samples]
            train_dict['X'] = train_dict['X'][:nb_samples]

    # this will do preprocessing and realtime data augmentation
    datagen = image_generators.RetinaNetGenerator(
        # fill_mode='constant',  # for rotations
        rotation_range=rotation_range,
        shear_range=shear,
        zoom_range=zoom_range,
        horizontal_flip=flip,
        vertical_flip=flip)

    datagen_val = image_generators.RetinaNetGenerator(
        # fill_mode='constant',  # for rotations
        rotation_range=0,
        shear_range=0,
        zoom_range=0,
        horizontal_flip=0,
        vertical_flip=0)

    # if 'vgg' in backbone or 'densenet' in backbone:
    #     compute_shapes = make_shapes_callback(model)
    # else:
    #     compute_shapes = guess_shapes

    compute_shapes = guess_shapes

    train_data = datagen.flow(train_dict,
                              seed=seed,
                              include_masks=include_masks,
                              panoptic=panoptic,
                              transforms=transforms,
                              transforms_kwargs=transforms_kwargs,
                              pyramid_levels=pyramid_levels,
                              min_objects=min_objects,
                              anchor_params=anchor_params,
                              compute_shapes=compute_shapes,
                              batch_size=batch_size)

    val_data = datagen_val.flow(test_dict,
                                seed=seed,
                                include_masks=include_masks,
                                panoptic=panoptic,
                                transforms=transforms,
                                transforms_kwargs=transforms_kwargs,
                                pyramid_levels=pyramid_levels,
                                min_objects=min_objects,
                                anchor_params=anchor_params,
                                compute_shapes=compute_shapes,
                                batch_size=batch_size)

    train_callbacks = get_callbacks(model_path,
                                    lr_sched=lr_sched,
                                    tensorboard_log_dir=log_dir,
                                    save_weights_only=num_gpus >= 2,
                                    monitor='val_loss',
                                    verbose=1)

    eval_callback = RedirectModel(
        Evaluate(val_data,
                 iou_threshold=iou_threshold,
                 score_threshold=score_threshold,
                 max_detections=max_detections,
                 tensorboard=train_callbacks[-1] if log_dir else None,
                 weighted_average=weighted_average), prediction_model)

    train_callbacks.append(eval_callback)

    # fit the model on the batches generated by datagen.flow()
    loss_history = model.fit_generator(
        train_data,
        steps_per_epoch=train_data.y.shape[0] // batch_size,
        epochs=n_epoch,
        validation_data=val_data,
        validation_steps=val_data.y.shape[0] // batch_size,
        callbacks=train_callbacks)

    model.save_weights(model_path)
    np.savez(loss_path, loss_history=loss_history.history)

    if compute_map:
        average_precisions = evaluate(
            val_data,
            prediction_model,
            iou_threshold=iou_threshold,
            score_threshold=score_threshold,
            max_detections=max_detections,
        )

        # print evaluation
        total_instances = []
        precisions = []
        for label, (average_precision,
                    num_annotations) in average_precisions.items():
            print('{:.0f} instances of class'.format(num_annotations), label,
                  'with average precision: {:.4f}'.format(average_precision))
            total_instances.append(num_annotations)
            precisions.append(average_precision)

        if sum(total_instances) == 0:
            print('No test instances found.')
        else:
            print(
                'mAP using the weighted average of precisions among classes: {:.4f}'
                .format(
                    sum([a * b for a, b in zip(total_instances, precisions)]) /
                    sum(total_instances)))
            print('mAP: {:.4f}'.format(
                sum(precisions) / sum(x > 0 for x in total_instances)))

    return model
Esempio n. 15
0
def train_model_retinanet(model,
                          dataset,
                          backbone,
                          expt='',
                          test_size=.1,
                          n_epoch=10,
                          batch_size=1,
                          num_gpus=None,
                          include_masks=False,
                          mask_size=(28, 28),
                          optimizer=SGD(lr=0.01,
                                        decay=1e-6,
                                        momentum=0.9,
                                        nesterov=True),
                          log_dir='/data/tensorboard_logs',
                          model_dir='/data/models',
                          model_name=None,
                          sigma=3.0,
                          alpha=0.25,
                          gamma=2.0,
                          score_threshold=0.01,
                          iou_threshold=0.5,
                          max_detections=100,
                          weighted_average=True,
                          lr_sched=rate_scheduler(lr=0.01, decay=0.95),
                          rotation_range=0,
                          flip=True,
                          shear=0,
                          zoom_range=0,
                          **kwargs):
    """Train a RetinaNet model from the given backbone

    Adapted from:
        https://github.com/fizyr/keras-retinanet &
        https://github.com/fizyr/keras-maskrcnn
    """
    is_channels_first = K.image_data_format() == 'channels_first'

    if model_name is None:
        todays_date = datetime.datetime.now().strftime('%Y-%m-%d')
        data_name = os.path.splitext(os.path.basename(dataset))[0]
        model_name = '{}_{}_{}'.format(todays_date, data_name, expt)
    model_path = os.path.join(model_dir, '{}.h5'.format(model_name))
    loss_path = os.path.join(model_dir, '{}.npz'.format(model_name))

    train_dict, test_dict = get_data(dataset, mode='conv', test_size=test_size)

    n_classes = model.layers[-1].output_shape[1 if is_channels_first else -1]
    # the data, shuffled and split between train and test sets
    print('X_train shape:', train_dict['X'].shape)
    print('y_train shape:', train_dict['y'].shape)
    print('X_test shape:', test_dict['X'].shape)
    print('y_test shape:', test_dict['y'].shape)
    print('Output Shape:', model.layers[-1].output_shape)
    print('Number of Classes:', n_classes)

    if num_gpus is None:
        num_gpus = train_utils.count_gpus()

    if num_gpus >= 1e6:
        batch_size = batch_size * num_gpus
        model = train_utils.MultiGpuModel(model, num_gpus)

    print('Training on {} GPUs'.format(num_gpus))

    def regress_loss(y_true, y_pred):
        # separate target and state
        regression = y_pred
        regression_target = y_true[..., :-1]
        anchor_state = y_true[..., -1]

        # filter out "ignore" anchors
        indices = tf.where(K.equal(anchor_state, 1))
        regression = tf.gather_nd(regression, indices)
        regression_target = tf.gather_nd(regression_target, indices)

        # compute the loss
        loss = losses.smooth_l1(regression_target, regression, sigma=sigma)

        # compute the normalizer: the number of positive anchors
        normalizer = K.maximum(1, K.shape(indices)[0])
        normalizer = K.cast(normalizer, dtype=K.floatx())

        return K.sum(loss) / normalizer

    def classification_loss(y_true, y_pred):
        # TODO: try weighted_categorical_crossentropy
        labels = y_true[..., :-1]
        # -1 for ignore, 0 for background, 1 for object
        anchor_state = y_true[..., -1]

        classification = y_pred
        # filter out "ignore" anchors
        indices = tf.where(K.not_equal(anchor_state, -1))
        labels = tf.gather_nd(labels, indices)
        classification = tf.gather_nd(classification, indices)

        # compute the loss
        loss = losses.focal(labels, classification, alpha=alpha, gamma=gamma)

        # compute the normalizer: the number of positive anchors
        normalizer = tf.where(K.equal(anchor_state, 1))
        normalizer = K.cast(K.shape(normalizer)[0], K.floatx())
        normalizer = K.maximum(K.cast_to_floatx(1.0), normalizer)

        return K.sum(loss) / normalizer

    def mask_loss(y_true, y_pred):
        def _mask(y_true, y_pred, iou_threshold=0.5, mask_size=(28, 28)):
            # split up the different predicted blobs
            boxes = y_pred[:, :, :4]
            masks = y_pred[:, :, 4:]

            # split up the different blobs
            annotations = y_true[:, :, :5]
            width = K.cast(y_true[0, 0, 5], dtype='int32')
            height = K.cast(y_true[0, 0, 6], dtype='int32')
            masks_target = y_true[:, :, 7:]

            # reshape the masks back to their original size
            masks_target = K.reshape(masks_target,
                                     (K.shape(masks_target)[0] *
                                      K.shape(masks_target)[1], height, width))
            masks = K.reshape(masks, (K.shape(masks)[0] * K.shape(masks)[1],
                                      mask_size[0], mask_size[1], -1))

            # batch size > 1 fix
            boxes = K.reshape(boxes, (-1, K.shape(boxes)[2]))
            annotations = K.reshape(annotations, (-1, K.shape(annotations)[2]))

            # compute overlap of boxes with annotations
            iou = overlap(boxes, annotations)
            argmax_overlaps_inds = K.argmax(iou, axis=1)
            max_iou = K.max(iou, axis=1)

            # filter those with IoU > 0.5
            indices = tf.where(K.greater_equal(max_iou, iou_threshold))
            boxes = tf.gather_nd(boxes, indices)
            masks = tf.gather_nd(masks, indices)
            argmax_overlaps_inds = tf.gather_nd(argmax_overlaps_inds, indices)
            argmax_overlaps_inds = K.cast(argmax_overlaps_inds, 'int32')
            labels = K.gather(annotations[:, 4], argmax_overlaps_inds)
            labels = K.cast(labels, 'int32')

            # make normalized boxes
            x1 = boxes[:, 0]
            y1 = boxes[:, 1]
            x2 = boxes[:, 2]
            y2 = boxes[:, 3]
            boxes = K.stack([
                y1 / (K.cast(height, dtype=K.floatx()) - 1),
                x1 / (K.cast(width, dtype=K.floatx()) - 1),
                (y2 - 1) / (K.cast(height, dtype=K.floatx()) - 1),
                (x2 - 1) / (K.cast(width, dtype=K.floatx()) - 1),
            ],
                            axis=1)

            # crop and resize masks_target
            # append a fake channel dimension
            masks_target = K.expand_dims(masks_target, axis=3)
            masks_target = tf.image.crop_and_resize(masks_target, boxes,
                                                    argmax_overlaps_inds,
                                                    mask_size)

            # remove fake channel dimension
            masks_target = masks_target[:, :, :, 0]

            # gather the predicted masks using the annotation label
            masks = tf.transpose(masks, (0, 3, 1, 2))
            label_indices = K.stack([tf.range(K.shape(labels)[0]), labels],
                                    axis=1)
            masks = tf.gather_nd(masks, label_indices)

            # compute mask loss
            mask_loss = K.binary_crossentropy(masks_target, masks)
            normalizer = K.shape(masks)[0] * K.shape(masks)[1] * K.shape(
                masks)[2]
            normalizer = K.maximum(K.cast(normalizer, K.floatx()), 1)
            mask_loss = K.sum(mask_loss) / normalizer

            return mask_loss

        # if there are no masks annotations, return 0; else, compute the masks loss
        return tf.cond(
            K.any(K.equal(K.shape(y_true), 0)), lambda: K.cast_to_floatx(0.0),
            lambda: _mask(y_true,
                          y_pred,
                          iou_threshold=iou_threshold,
                          mask_size=mask_size))

    # evaluation of model is done on `retinanet_bbox`
    if include_masks:
        prediction_model = model
    else:
        prediction_model = retinanet_bbox(model,
                                          nms=True,
                                          class_specific_filter=False)

    loss = {'regression': regress_loss, 'classification': classification_loss}

    if include_masks:
        loss['masks'] = mask_loss

    model.compile(loss=loss, optimizer=optimizer)

    if num_gpus >= 2:
        # Each GPU must have at least one validation example
        if test_dict['y'].shape[0] < num_gpus:
            raise ValueError('Not enough validation data for {} GPUs. '
                             'Received {} validation sample.'.format(
                                 test_dict['y'].shape[0], num_gpus))

        # When using multiple GPUs and skip_connections,
        # the training data must be evenly distributed across all GPUs
        num_train = train_dict['y'].shape[0]
        nb_samples = num_train - num_train % batch_size
        if nb_samples:
            train_dict['y'] = train_dict['y'][:nb_samples]
            train_dict['X'] = train_dict['X'][:nb_samples]

    # this will do preprocessing and realtime data augmentation
    datagen = image_generators.RetinaNetGenerator(
        # fill_mode='constant',  # for rotations
        rotation_range=rotation_range,
        shear_range=shear,
        zoom_range=zoom_range,
        horizontal_flip=flip,
        vertical_flip=flip)

    datagen_val = image_generators.RetinaNetGenerator(
        # fill_mode='constant',  # for rotations
        rotation_range=0,
        shear_range=0,
        zoom_range=0,
        horizontal_flip=0,
        vertical_flip=0)

    if 'vgg' in backbone or 'densenet' in backbone:
        compute_shapes = make_shapes_callback(model)
    else:
        compute_shapes = guess_shapes

    train_data = datagen.flow(train_dict,
                              include_masks=include_masks,
                              compute_shapes=compute_shapes,
                              batch_size=batch_size)

    val_data = datagen_val.flow(test_dict,
                                include_masks=include_masks,
                                compute_shapes=compute_shapes,
                                batch_size=batch_size)

    tensorboard_callback = callbacks.TensorBoard(
        log_dir=os.path.join(log_dir, model_name))

    # fit the model on the batches generated by datagen.flow()
    loss_history = model.fit_generator(
        train_data,
        steps_per_epoch=train_data.y.shape[0] // batch_size,
        epochs=n_epoch,
        validation_data=val_data,
        validation_steps=val_data.y.shape[0] // batch_size,
        callbacks=[
            callbacks.LearningRateScheduler(lr_sched),
            callbacks.ModelCheckpoint(model_path,
                                      monitor='val_loss',
                                      verbose=1,
                                      save_best_only=True,
                                      save_weights_only=num_gpus >= 2),
            tensorboard_callback,
            callbacks.ReduceLROnPlateau(monitor='loss',
                                        factor=0.1,
                                        patience=10,
                                        verbose=1,
                                        mode='auto',
                                        min_delta=0.0001,
                                        cooldown=0,
                                        min_lr=0),
            RedirectModel(
                Evaluate(val_data,
                         iou_threshold=iou_threshold,
                         score_threshold=score_threshold,
                         max_detections=max_detections,
                         tensorboard=tensorboard_callback,
                         weighted_average=weighted_average), prediction_model),
        ])

    model.save_weights(model_path)
    np.savez(loss_path, loss_history=loss_history.history)

    average_precisions = evaluate(
        val_data,
        prediction_model,
        iou_threshold=iou_threshold,
        score_threshold=score_threshold,
        max_detections=max_detections,
    )

    # print evaluation
    total_instances = []
    precisions = []
    for label, (average_precision,
                num_annotations) in average_precisions.items():
        print('{:.0f} instances of class'.format(num_annotations), label,
              'with average precision: {:.4f}'.format(average_precision))
        total_instances.append(num_annotations)
        precisions.append(average_precision)

    if sum(total_instances) == 0:
        print('No test instances found.')
    else:
        print(
            'mAP using the weighted average of precisions among classes: {:.4f}'
            .format(
                sum([a * b for a, b in zip(total_instances, precisions)]) /
                sum(total_instances)))
        print('mAP: {:.4f}'.format(
            sum(precisions) / sum(x > 0 for x in total_instances)))

    return model