def generate_training_data(): file_name_save = os.path.join(NPZ_DIR, PREFIX, DATA_FILE) num_of_features = 2 # Specify the number of feature masks that are present window_size = (30, 30) # Size of window around pixel training_direcs = ['set1', 'set2'] channel_names = ['Phase'] raw_image_direc = 'raw' annotation_direc = 'annotated' # Create the training data make_training_data( direc_name=os.path.join(DATA_DIR, PREFIX), dimensionality=2, max_training_examples=1e6, # Define maximum number of training examples window_size_x=window_size[0], window_size_y=window_size[1], border_mode=BORDER_MODE, file_name_save=file_name_save, training_direcs=training_direcs, channel_names=channel_names, num_of_features=num_of_features, raw_image_direc=raw_image_direc, annotation_direc=annotation_direc, reshape_size=RESHAPE_SIZE if RESIZE else None, edge_feature=[1, 0, 0], # Specify which feature is the edge feature, dilation_radius=1, output_mode=DATA_OUTPUT_MODE, display=False, verbose=True)
direc_name = '/data/training_data/nuclei_broad/' file_name_save = os.path.join('/data/training_data_npz/nuclei_broad/', 'nuclei_broad_valid_conv_61x61.npz') training_direcs = ['set1', 'set2', 'set3', 'set4', 'set5'] channel_names = ['nuclear'] # Specify the number of feature masks that are present num_of_features = 2 # Specify which feature is the edge feature edge_feature = [1, 0, 0] # Create the training data make_training_data(max_training_examples=max_training_examples, window_size_x=window_size, window_size_y=window_size, direc_name=direc_name, file_name_save=file_name_save, training_direcs=training_direcs, channel_names=channel_names, num_of_features=2, edge_feature=edge_feature, dilation_radius=0, border_mode="valid", sample_mode="all", output_mode="conv", reshape_size=512, display=False, verbose=True, process_std=False)
from deepcell import make_training_data_2d as make_training_data # Define maximum number of training examples max_training_examples = 1e6 window_size = 30 # Load data direc_name = '/data/training_data/HeLa_joint/' file_name_save = os.path.join('/data/training_data_npz/HeLa/', 'HeLa_joint_sample_61x61.npz') training_direcs = ['set1', 'set2', 'set3', 'set4', 'set5'] channel_names = ['phase', 'nuclear'] # Specify the number of feature masks that are present num_of_features = 2 # Specify which feature is the edge feature edge_feature = [1,0,0] # Create the training data make_training_data(max_training_examples = max_training_examples, window_size_x = window_size, window_size_y = window_size, direc_name = direc_name, file_name_save = file_name_save, training_direcs = training_direcs, channel_names = channel_names, num_of_features = 2, edge_feature = edge_feature, dilation_radius = 1, display = False, verbose = True)
channel_names = ["phase"] # Specify the number of feature masks that are present num_of_features = 2 # Specify which feature is the edge feature edge_feature = [1,0,0] # Create the training data make_training_data(max_training_examples = max_training_examples, window_size_x = window_size, window_size_y = window_size, direc_name = direc_name, file_name_save = file_name_save, training_direcs = training_direcs, channel_names = channel_names, num_of_features = 2, edge_feature = edge_feature, dilation_radius = 1, #sub_sample = True, sample_mode = "subsample", reshape_size = None, display = False, verbose = True, process_std = True)
from deepcell import make_training_data_movie as make_training_data # Define maximum number of training examples window_size = 30 # Load data direc_name = '/data/DL_Training_Data/nuclear_movie' file_name_save = os.path.join('/data/training_data_npz/nuclear_movie/', 'nuclear_movie_disc_same.npz') training_direcs = ["set1", "set2"] channel_names = ["DAPI"] # Create the training data make_training_data(window_size_x = 30, window_size_y = 30, direc_name = direc_name, file_name_save = file_name_save, training_direcs = training_direcs, channel_names = channel_names, annotation_name = "corrected", raw_image_direc = "RawImages", annotation_direc = "Annotation", border_mode = "same", output_mode = "disc", num_frames = 60, reshaped_size = 256, display = False, num_of_frames_to_display = 5, verbose = True)
"set1", "set2", "set3", "set4", "set5", "set6", "set7", "set8", "set9" ] channel_names = ["nuclear"] # Create output ditrectory, if necessary pathlib.Path(output_directory).mkdir(parents=True, exist_ok=True) # Specify the number of feature masks that are present num_of_features = 2 # Specify which feature is the edge feature edge_feature = [1, 0, 0] # Create the training data make_training_data(max_training_examples=max_training_examples, window_size_x=window_size, window_size_y=window_size, direc_name=direc_name, file_name_save=file_name_save, training_direcs=training_direcs, channel_names=channel_names, num_of_features=2, edge_feature=edge_feature, dilation_radius=1, border_mode="same", output_mode="conv", reshape_size=512, display=False, max_plotted=5, verbose=True)