def main():
    direc_data = '/data/npz_data/cells/unspecified_nuclear_data/nuclear_movie/'
    dataset = 'nuclear_movie_same'

    training_data = np.load('{}{}.npz'.format(direc_data, dataset))

    optimizer = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)
    lr_sched = rate_scheduler(lr=0.01, decay=0.99)
    in_shape = (14, 14, 1)
    model = the_model(input_shape=in_shape)  #, n_features=1, reg=1e-5)

    train_model_siamese(
        model=model,
        dataset='nuclear_movie_same',
        optimizer=optimizer,
        expt='',
        it=0,
        batch_size=1,
        n_epoch=100,
        direc_save='/data/models/cells/unspecified_nuclear_data/nuclear_movie',
        direc_data=
        '/data/npz_data/cells/unspecified_nuclear_data/nuclear_movie/',
        lr_sched=lr_sched,
        rotation_range=0,
        flip=True,
        shear=0,
        class_weight=None)
Esempio n. 2
0
def train_model_on_training_data():
    direc_save = os.path.join(MODEL_DIR, PREFIX)
    direc_data = os.path.join(NPZ_DIR, PREFIX)
    training_data = np.load(os.path.join(direc_data, DATA_FILE + '.npz'))

    class_weights = training_data['class_weights']
    X, y = training_data['X'], training_data['y']
    print('X.shape: {}\ny.shape: {}'.format(X.shape, y.shape))

    n_epoch = 100
    batch_size = 32 if DATA_OUTPUT_MODE == 'sample' else 1
    optimizer = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)
    lr_sched = rate_scheduler(lr=0.01, decay=0.99)

    model_args = {'norm_method': 'median', 'reg': 1e-5, 'n_features': 3}

    data_format = K.image_data_format()
    row_axis = 2 if data_format == 'channels_first' else 1
    col_axis = 3 if data_format == 'channels_first' else 2
    channel_axis = 1 if data_format == 'channels_first' else 3

    if DATA_OUTPUT_MODE == 'sample':
        train_model = train_model_sample
        the_model = bn_feature_net_61x61
        model_args['n_channels'] = 1

    elif DATA_OUTPUT_MODE == 'conv' or DATA_OUTPUT_MODE == 'disc':
        train_model = train_model_conv
        the_model = bn_dense_feature_net
        model_args['location'] = False

        size = (RESHAPE_SIZE,
                RESHAPE_SIZE) if RESIZE else X.shape[row_axis:col_axis + 1]
        if data_format == 'channels_first':
            model_args['input_shape'] = (X.shape[channel_axis], size[0],
                                         size[1])
        else:
            model_args['input_shape'] = (size[0], size[1],
                                         X.shape[channel_axis])

    model = the_model(**model_args)

    train_model(model=model,
                dataset=DATA_FILE,
                optimizer=optimizer,
                batch_size=batch_size,
                n_epoch=n_epoch,
                direc_save=direc_save,
                direc_data=direc_data,
                lr_sched=lr_sched,
                class_weight=class_weights,
                rotation_range=180,
                flip=True,
                shear=True)
Esempio n. 3
0
import numpy as np

batch_size = 1
n_epoch = 100

dataset = "nuclei_broad_same_conv_61x61"
expt = "bn_dense_feature_net"

direc_save = "/data/trained_networks/nuclei_broad/"
direc_data = "/data/training_data_npz/nuclei_broad/"

# Create output ditrectory, if necessary
pathlib.Path(direc_save).mkdir(parents=True, exist_ok=True)

optimizer = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)
lr_sched = rate_scheduler(lr=0.01, decay=0.99)

file_name = os.path.join(direc_data, dataset + ".npz")
training_data = np.load(file_name)
class_weights = training_data["class_weights"]

for iterate in range(1):

    model = the_model(batch_shape=(1, 512, 512, 1),
                      n_features=3,
                      reg=1e-5,
                      softmax=True,
                      permute=True)

    train_model(model=model,
                dataset=dataset,
from scipy.misc import imsave

batch_size = 1
n_epoch = 50

dataset = "nuclear_movie_disc_same"
expt = "bn_dense_net_3D"

direc_save = "/data/trained_networks/nuclear_movie/"
direc_data = "/data/training_data_npz/nuclear_movie/"

# Create output ditrectory, if necessary
pathlib.Path(direc_save).mkdir(parents=True, exist_ok=True)

optimizer = SGD(lr=1e-2, decay=1e-6, momentum=0.9, nesterov=True)
lr_sched = rate_scheduler(lr=1e-2, decay=0.99)

file_name = os.path.join(direc_data, dataset + ".npz")
training_data = np.load(file_name)

for iterate in range(1):

    model = the_model(batch_shape=(1, 1, 5, 256, 256),
                      n_features=3,
                      reg=1e-5,
                      location=False,
                      permute=True,
                      softmax=False)

    trained_model = train_model(model=model,
                                dataset=dataset,