Esempio n. 1
0
 def __init__(
     self,
     model: Model,
     train_loader: DataLoader,
     val_loader: DataLoader,
     max_epoch: int = 100,
     save_dir: str = "swa_trainer",
     checkpoint_path: str = None,
     device="cpu",
     config: dict = None,
     **kwargs,
 ) -> None:
     super().__init__(
         model,
         train_loader,
         val_loader,
         max_epoch,
         save_dir,
         checkpoint_path,
         device,
         config,
         **kwargs,
     )
     # initialize swa_model.
     self.swa_model = Model.initialize_from_state_dict(model.state_dict())
     self.swa_model.to(self.device)
     self.swa_n = 0
Esempio n. 2
0
class TestTrainer(TestCase):
    def setUp(self) -> None:
        super().setUp()
        arch_dict = {
            "name": "clusternet6cTwoHead",
            "input_size": 24,
            "num_channel": 1,
            "output_k_A": 50,
            "output_k_B": 10,
            "num_sub_heads": 5,
        }
        optim_dict = {"name": "Adam"}
        scheduler_dict = {
            "name": "MultiStepLR",
            "milestones": [10, 20, 30, 40, 50, 60, 70, 80, 90],
            "gamma": 1,
        }

        self.model = Model(arch_dict, optim_dict, scheduler_dict)
        self.scheduler = RampScheduler(100, 500, 10, 1, -5)

    def test_save_trainer(self):
        for epoch in range(50):
            self.model.step()
            self.scheduler.step()
Esempio n. 3
0
    def setUp(self) -> None:
        super().setUp()
        self._model = Model(arch=deeplabv3_resnet101(pretrained=True))
        self._model_ema = EMA_Model(Model(deeplabv3_resnet101(False)),
                                    alpha=0.9,
                                    weight_decay=1e-4)
        # self._model_ema._model.load_state_dict(self._model.state_dict())
        self._device = torch.device(
            "cuda" if torch.cuda.is_available() else "cpu")
        self._img = (ToTensor()(
            Image.open("img1.jpg").convert("RGB")).unsqueeze(0).to(
                self._device))

        self._model.to(self._device)
        self._model_ema.to(self._device)
Esempio n. 4
0
    def setUp(self) -> None:
        super().setUp()
        arch_dict = {
            "name": "clusternet6cTwoHead",
            "input_size": 24,
            "num_channel": 1,
            "output_k_A": 50,
            "output_k_B": 10,
            "num_sub_heads": 5,
        }
        optim_dict = {"name": "Adam"}
        scheduler_dict = {
            "name": "MultiStepLR",
            "milestones": [10, 20, 30, 40, 50, 60, 70, 80, 90],
            "gamma": 1,
        }

        self.model = Model(arch_dict, optim_dict, scheduler_dict)
        self.scheduler = RampScheduler(100, 500, 10, 1, -5)
Esempio n. 5
0
class TestEMA(TestCase):
    def setUp(self) -> None:
        super().setUp()
        self._model = Model(arch=deeplabv3_resnet101(pretrained=True))
        self._model_ema = EMA_Model(Model(deeplabv3_resnet101(False)),
                                    alpha=0.9,
                                    weight_decay=1e-4)
        # self._model_ema._model.load_state_dict(self._model.state_dict())
        self._device = torch.device(
            "cuda" if torch.cuda.is_available() else "cpu")
        self._img = (ToTensor()(
            Image.open("img1.jpg").convert("RGB")).unsqueeze(0).to(
                self._device))

        self._model.to(self._device)
        self._model_ema.to(self._device)

    def test_1(self):
        self._model.eval()
        self._model_ema.eval()
        with torch.no_grad():
            student_prediction = self._model(self._img)["out"]
            plt.figure(1)
            plt.imshow(self._img[0].cpu().numpy().transpose(1, 2, 0))
            plt.contour(student_prediction.max(1)[1].cpu().detach().numpy()[0])
            plt.show(block=False)
            self._model_ema._global_step += 1
            for i in range(1000):
                teacher_prediction = self._model_ema(self._img)["out"]
                plt.figure(2)
                plt.clf()
                plt.imshow(self._img[0].cpu().numpy().transpose(1, 2, 0))
                plt.contour(
                    teacher_prediction.max(1)[1].cpu().detach().numpy()[0])
                plt.show(block=False)
                plt.pause(0.00000003)
                self._model_ema.step(self._model)
Esempio n. 6
0
 def _gaussian_regularization(self,
                              model: Model,
                              tf1_images,
                              tf1_pred_simplex: List[Tensor],
                              head_name="B") -> Tensor:
     """
     calculate predicton simplexes on gaussian noise tf1 images and the kl div of the original prediction simplex.
     :param tf1_images: tf1-transformed images
     :param tf1_pred_simplex: simplex list of tf1-transformed image prediction
     :return:  loss
     """
     _tf1_images_gaussian = self.gaussian_adder(tf1_images)
     _tf1_gaussian_simplex = model.torchnet(_tf1_images_gaussian,
                                            head=head_name)
     assert assert_list(simplex, tf1_pred_simplex)
     assert assert_list(simplex, _tf1_gaussian_simplex)
     assert tf1_pred_simplex.__len__() == _tf1_gaussian_simplex.__len__()
     reg_loss = []
     for __tf1_simplex, __tf1_gaussian_simplex in zip(
             tf1_pred_simplex, _tf1_gaussian_simplex):
         reg_loss.append(
             self.kl_div(__tf1_gaussian_simplex, __tf1_simplex.detach()))
     return sum(reg_loss) / len(reg_loss)  # type: ignore
Esempio n. 7
0
    assert Trainer, config.get("Trainer").get("name")
    return Trainer


DEFAULT_CONFIG = "config_CIFAR.yaml"

merged_config = ConfigManger(DEFAULT_CONFIG_PATH=DEFAULT_CONFIG,
                             verbose=True,
                             integrality_check=True).config
train_loader_A, train_loader_B, val_loader = get_dataloader(
    **merged_config["DataLoader"])

# create model:
model = Model(
    arch_dict=merged_config["Arch"],
    optim_dict=merged_config["Optim"],
    scheduler_dict=merged_config["Scheduler"],
)
model = to_Apex(model, opt_level=None, verbosity=0)

Trainer = get_trainer(merged_config)

clusteringTrainer = Trainer(model=model,
                            train_loader_A=train_loader_A,
                            train_loader_B=train_loader_B,
                            val_loader=val_loader,
                            config=merged_config,
                            **merged_config["Trainer"])
clusteringTrainer.start_training()
clusteringTrainer.clean_up()
Esempio n. 8
0
        gdl_loss = self.abs_loss(orig_gradient_x, pred_gradient_x) + self.abs_loss(
            orig_gradient_y, pred_gradient_y
        )
        return self.mse(pred, gt) + self.gdl_weight * gdl_loss


img_transform = transforms.Compose(
    [
        transforms.ToTensor(),
        # transforms.Normalize((0.5), (0.5))
    ]
)
dataset = MNIST(DATA_PATH, transform=img_transform)
dataloader = DataLoader(dataset, batch_size=128, shuffle=True)

model = Model()
model.torchnet = autoencoder()
model.optimizer = torch.optim.Adam(
    model.torchnet.parameters(), lr=1e-3, weight_decay=1e-5
)

config = ConfigManger().parsed_args
if config["loss"] == "mse":
    criterion = nn.MSELoss()
elif config["loss"] == "gdl":
    criterion = gradient_difference_loss(config["weight"])

trainer = MNISTTrainer(
    model=model,
    train_loader=dataloader,
    val_loader=dataloader,
Esempio n. 9
0
                                                **config["DataLoader"])
datainterface.drop_last = True
train_loader = datainterface.ParallelDataLoader(
    default_mnist_img_transform["tf1"],
    default_mnist_img_transform["tf2"],
    default_mnist_img_transform["tf2"],
    default_mnist_img_transform["tf2"],
    default_mnist_img_transform["tf2"],
    default_mnist_img_transform["tf2"],
)
datainterface.split_partitions = ["val"]
datainterface.drop_last = False
val_loader = datainterface.ParallelDataLoader(
    default_mnist_img_transform["tf3"])

model = Model(config["Arch"], config["Optim"], config["Scheduler"])

assert config["Trainer"]["name"] in (
    "IIC",
    "IIC_enhance",
    "IIC_adv_enhance",
    "IMSAT",
    "IMSAT_enhance",
)
if config["Trainer"]["name"] == "IMSAT":
    # MI(x,p) + CE(p,adv(p)) or MI(x,p) + CE(p,geom(p))
    Trainer = IMSAT_Trainer
elif config["Trainer"]["name"] == "IMSAT_enhance":
    # MI(x,p) + CE(p,adv(p)) + CE(p,geom(p))
    Trainer = IMSAT_Enhanced_Trainer
elif config["Trainer"]["name"] == "IIC":
Esempio n. 10
0
            img_transforms["tf1"],
            img_transforms["tf2"],
            img_transforms["tf2"],
            img_transforms["tf2"],
            img_transforms["tf2"],
        )
    val_loader = DatasetInterface(
        split_partitions=val_split_partition,
        **merged_config["DataLoader"]).ParallelDataLoader(
            img_transforms["tf3"])
    return train_loader_A, train_loader_B, val_loader


train_loader_A, train_loader_B, val_loader = get_dataloader(merged_config)

# create model:
model = Model(
    arch_dict=merged_config.get("Arch"),
    optim_dict=merged_config.get("Optim"),
    scheduler_dict=merged_config.get("Scheduler"),
)

trainer = MixUpTrainer(model=model,
                       train_loader_A=train_loader_A,
                       train_loader_B=train_loader_B,
                       val_loader=val_loader,
                       config=merged_config,
                       **merged_config.get("Trainer"))
trainer.start_training()
trainer.clean_up()
Esempio n. 11
0
    val_transform=val_transform,
    dataloader_params=dataloader_params,
)
prior = get_prior_from_dataset(unlabeled_loader.dataset)
print("prior for unlabeled dataset", prior)
# network part
import warnings

fix_all_seed(int(config.get("Seed", 0)))

with warnings.catch_warnings():
    warnings.filterwarnings("ignore")
    net = SimpleNet(1, len(unlabeled_class_sample_nums))
    optim = RAdam(net.parameters(), lr=1e-4, weight_decay=1e-4)
    scheduler = MultiStepLR(optim, milestones=[50, 80], gamma=0.2)
    model = Model()
    model.torchnet = net
    model.optimizer = optim
    model.scheduler = scheduler

# trainer part
Trainer = {
    "SemiTrainer": SemiTrainer,
    "SemiEntropyTrainer": SemiEntropyTrainer,
    "SemiPrimalDualTrainer": SemiPrimalDualTrainer,
    "SemiWeightedIICTrainer": SemiWeightedIICTrainer,
    "SemiUDATrainer": SemiUDATrainer,
}.get(config["Trainer"]["name"])
assert Trainer

trainer = Trainer(
Esempio n. 12
0
from deepclustering.manager import ConfigManger
from deepclustering.model import Model, to_Apex

from arch import _register_arch
from data import get_dataloader
from scheduler import CustomScheduler
from trainer import AdaNetTrainer, VAT_Trainer

_ = _register_arch  # to enable the network registration

DEFAULT_CONFIG_PATH = "config.yaml"
config = ConfigManger(DEFAULT_CONFIG_PATH,
                      verbose=True,
                      integrality_check=False).config
model = Model(config.get("Arch"), config.get("Optim"), config.get("Scheduler"))
model = to_Apex(model, opt_level=None)

label_loader, unlabel_loader, val_loader = get_dataloader(
    config["DataLoader"].get("name"),
    config["DataLoader"].get("aug", False),
    config.get("DataLoader"),
)
scheduler = CustomScheduler(max_epoch=config["Trainer"]["max_epoch"])
assert config["Trainer"].get("name") in ("vat", "ada")

Trainer = VAT_Trainer if config["Trainer"]["name"].lower(
) == "vat" else AdaNetTrainer
trainer = Trainer(model=model,
                  labeled_loader=label_loader,
                  unlabeled_loader=unlabel_loader,
                  val_loader=val_loader,