Esempio n. 1
0
    def main(self, name, opts):
        logging.basicConfig(filename=opts.log_file,
                            format='%(levelname)s (%(asctime)s): %(message)s')
        log = logging.getLogger(name)
        if opts.verbose:
            log.setLevel(logging.DEBUG)
        else:
            log.setLevel(logging.INFO)

        if not opts.model_files:
            raise ValueError('No model files provided!')

        log.info('Loading model ...')
        model = mod.load_model(opts.model_files)

        log.info('Loading data ...')
        nb_sample = dat.get_nb_sample(opts.data_files, opts.nb_sample)
        replicate_names = dat.get_replicate_names(opts.data_files[0],
                                                  regex=opts.replicate_names,
                                                  nb_key=opts.nb_replicate)
        data_reader = mod.data_reader_from_model(
            model, replicate_names, replicate_names=replicate_names)

        # Seed used since unobserved input CpG states are randomly sampled
        if opts.seed is not None:
            np.random.seed(opts.seed)
            random.seed(opts.seed)

        data_reader = data_reader(opts.data_files,
                                  nb_sample=nb_sample,
                                  batch_size=opts.batch_size,
                                  loop=False,
                                  shuffle=False)

        meta_reader = hdf.reader(opts.data_files, ['chromo', 'pos'],
                                 nb_sample=nb_sample,
                                 batch_size=opts.batch_size,
                                 loop=False,
                                 shuffle=False)

        writer = None
        if opts.out_data:
            writer = H5Writer(opts.out_data, nb_sample)

        log.info('Predicting ...')
        nb_tot = 0
        nb_eval = 0
        data_eval = dict()
        perf_eval = []
        progbar = ProgressBar(nb_sample, log.info)
        for inputs, outputs, weights in data_reader:
            batch_size = len(list(inputs.values())[0])
            nb_tot += batch_size
            progbar.update(batch_size)

            preds = to_list(model.predict(inputs))

            data_batch = dict()
            data_batch['preds'] = dict()
            data_batch['outputs'] = dict()
            for i, name in enumerate(model.output_names):
                data_batch['preds'][name] = preds[i].squeeze()
                data_batch['outputs'][name] = outputs[name].squeeze()

            for name, value in six.iteritems(next(meta_reader)):
                data_batch[name] = value

            if writer:
                writer.write_dict(data_batch)

            nb_eval += batch_size
            dat.add_to_dict(data_batch, data_eval)

            if nb_tot >= nb_sample or \
                    (opts.eval_size and nb_eval >= opts.eval_size):
                data_eval = dat.stack_dict(data_eval)
                perf_eval.append(
                    ev.evaluate_outputs(data_eval['outputs'],
                                        data_eval['preds']))
                data_eval = dict()
                nb_eval = 0

        progbar.close()
        if writer:
            writer.close()

        report = pd.concat(perf_eval)
        report = report.groupby(['metric', 'output']).mean().reset_index()

        if opts.out_report:
            report.to_csv(opts.out_report, sep='\t', index=False)

        report = ev.unstack_report(report)
        print(report.to_string())

        log.info('Done!')

        return 0
Esempio n. 2
0
    def main(self, name, opts):
        logging.basicConfig(filename=opts.log_file,
                            format='%(levelname)s (%(asctime)s): %(message)s')
        log = logging.getLogger(name)
        if opts.verbose:
            log.setLevel(logging.DEBUG)
        else:
            log.setLevel(logging.INFO)

        if opts.seed is not None:
            np.random.seed(opts.seed)
            random.seed(opts.seed)

        self.log = log
        self.opts = opts

        make_dir(opts.out_dir)

        log.info('Building model ...')
        model = self.build_model()

        model.summary()
        self.set_trainability(model)
        if opts.filter_weights:
            conv_layer = mod.get_first_conv_layer(model.layers)
            log.info('Initializing filters of %s ...' % conv_layer.name)
            self.init_filter_weights(opts.filter_weights, conv_layer)
        mod.save_model(model, os.path.join(opts.out_dir, 'model.json'))

        log.info('Computing output statistics ...')
        output_names = []
        for output_layer in model.output_layers:
            output_names.append(output_layer.name)

        output_stats = OrderedDict()

        if opts.no_class_weights:
            class_weights = None
        else:
            class_weights = OrderedDict()

        for name in output_names:
            output = hdf.read(opts.train_files,
                              'outputs/%s' % name,
                              nb_sample=opts.nb_train_sample)
            output = list(output.values())[0]
            output_stats[name] = get_output_stats(output)
            if class_weights is not None:
                class_weights[name] = get_output_class_weights(name, output)

        self.print_output_stats(output_stats)
        if class_weights:
            self.print_class_weights(class_weights)

        output_weights = None
        if opts.output_weights:
            log.info('Initializing output weights ...')
            output_weights = get_output_weights(output_names,
                                                opts.output_weights)
            print('Output weights:')
            for output_name in output_names:
                if output_name in output_weights:
                    print('%s: %.2f' %
                          (output_name, output_weights[output_name]))
            print()

        self.metrics = dict()
        for output_name in output_names:
            self.metrics[output_name] = get_metrics(output_name)

        optimizer = Adam(lr=opts.learning_rate)
        model.compile(optimizer=optimizer,
                      loss=mod.get_objectives(output_names),
                      loss_weights=output_weights,
                      metrics=self.metrics)

        log.info('Loading data ...')
        replicate_names = dat.get_replicate_names(opts.train_files[0],
                                                  regex=opts.replicate_names,
                                                  nb_key=opts.nb_replicate)
        data_reader = mod.data_reader_from_model(
            model, replicate_names=replicate_names)
        nb_train_sample = dat.get_nb_sample(opts.train_files,
                                            opts.nb_train_sample)
        train_data = data_reader(opts.train_files,
                                 class_weights=class_weights,
                                 batch_size=opts.batch_size,
                                 nb_sample=nb_train_sample,
                                 shuffle=True,
                                 loop=True)

        if opts.val_files:
            nb_val_sample = dat.get_nb_sample(opts.val_files,
                                              opts.nb_val_sample)
            val_data = data_reader(opts.val_files,
                                   batch_size=opts.batch_size,
                                   nb_sample=nb_val_sample,
                                   shuffle=False,
                                   loop=True)
        else:
            val_data = None
            nb_val_sample = None

        log.info('Initializing callbacks ...')
        callbacks = self.get_callbacks()

        log.info('Training model ...')
        print()
        print('Training samples: %d' % nb_train_sample)
        if nb_val_sample:
            print('Validation samples: %d' % nb_val_sample)
        model.fit_generator(train_data,
                            nb_train_sample,
                            opts.nb_epoch,
                            callbacks=callbacks,
                            validation_data=val_data,
                            nb_val_samples=nb_val_sample,
                            max_q_size=opts.data_q_size,
                            nb_worker=opts.data_nb_worker,
                            verbose=0)

        print('\nTraining set performance:')
        print(
            format_table(self.perf_logger.epoch_logs, precision=LOG_PRECISION))

        if self.perf_logger.val_epoch_logs:
            print('\nValidation set performance:')
            print(
                format_table(self.perf_logger.val_epoch_logs,
                             precision=LOG_PRECISION))

        # Restore model with highest validation performance
        filename = os.path.join(opts.out_dir, 'model_weights_val.h5')
        if os.path.isfile(filename):
            model.load_weights(filename)

        # Delete metrics since they cause problems when loading the model
        # from HDF5 file. Metrics can be loaded from json + weights file.
        model.metrics = None
        model.metrics_names = None
        model.metrics_tensors = None
        model.save(os.path.join(opts.out_dir, 'model.h5'))

        log.info('Done!')

        return 0
Esempio n. 3
0
    def main(self, name, opts):
        logging.basicConfig(filename=opts.log_file,
                            format='%(levelname)s (%(asctime)s): %(message)s')
        log = logging.getLogger(name)
        if opts.verbose:
            log.setLevel(logging.DEBUG)
        else:
            log.setLevel(logging.INFO)
            log.debug(opts)

        if opts.seed is not None:
            np.random.seed(opts.seed)

        if not opts.model_files:
            raise ValueError('No model files provided!')

        log.info('Loading model ...')
        K.set_learning_phase(0)
        model = mod.load_model(opts.model_files)

        # Get DNA layer.
        dna_layer = None
        for layer in model.layers:
            if layer.name == 'dna':
                dna_layer = layer
                break
        if not dna_layer:
            raise ValueError('The provided model is not a DNA model!')

        # Create output vector.
        outputs = []
        for output in model.outputs:
            outputs.append(K.reshape(output, (-1, 1)))
        outputs = K.concatenate(outputs, axis=1)

        # Compute gradient of outputs wrt. DNA layer.
        grads = []
        for name in opts.targets:
            if name == 'mean':
                target = K.mean(outputs, axis=1)
            elif name == 'var':
                target = K.var(outputs, axis=1)
            else:
                raise ValueError('Invalid effect size "%s"!' % name)
            grad = K.gradients(target, dna_layer.output)
            grads.extend(grad)
        grad_fun = K.function(model.inputs, grads)

        log.info('Reading data ...')
        nb_sample = dat.get_nb_sample(opts.data_files, opts.nb_sample)
        replicate_names = dat.get_replicate_names(opts.data_files[0],
                                                  regex=opts.replicate_names,
                                                  nb_key=opts.nb_replicate)
        data_reader = mod.data_reader_from_model(
            model, outputs=False, replicate_names=replicate_names)
        data_reader = data_reader(opts.data_files,
                                  nb_sample=nb_sample,
                                  batch_size=opts.batch_size,
                                  loop=False,
                                  shuffle=False)

        meta_reader = hdf.reader(opts.data_files, ['chromo', 'pos'],
                                 nb_sample=nb_sample,
                                 batch_size=opts.batch_size,
                                 loop=False,
                                 shuffle=False)

        out_file = h5.File(opts.out_file, 'w')
        out_group = out_file

        def h5_dump(path, data, idx, dtype=None, compression='gzip'):
            if path not in out_group:
                if dtype is None:
                    dtype = data.dtype
                out_group.create_dataset(name=path,
                                         shape=[nb_sample] +
                                         list(data.shape[1:]),
                                         dtype=dtype,
                                         compression=compression)
            out_group[path][idx:idx + len(data)] = data

        log.info('Computing effects ...')
        progbar = ProgressBar(nb_sample, log.info)
        idx = 0
        for inputs in data_reader:
            if isinstance(inputs, dict):
                inputs = list(inputs.values())
            batch_size = len(inputs[0])
            progbar.update(batch_size)

            # Compute gradients.
            grads = grad_fun(inputs)

            # Slice window at center.
            if opts.dna_wlen:
                for i, grad in enumerate(grads):
                    delta = opts.dna_wlen // 2
                    ctr = grad.shape[1] // 2
                    grads[i] = grad[:, (ctr - delta):(ctr + delta + 1)]

            # Aggregate effects in window
            if opts.agg_effects:
                for i, grad in enumerate(grads):
                    if opts.agg_effects == 'mean':
                        grad = grad.mean(axis=1)
                    elif opts.agg_effects == 'wmean':
                        weights = linear_weights(grad.shape[1])
                        grad = np.average(grad, axis=1, weights=weights)
                    elif opts.agg_effects == 'max':
                        grad = grad.max(axis=1)
                    else:
                        tmp = 'Invalid function "%s"!' % (opts.agg_effects)
                        raise ValueError(tmp)
                    grads[i] = grad

            # Write computed effects
            for name, grad in zip(opts.targets, grads):
                h5_dump(name, grad, idx)

            # Store inputs
            if opts.store_inputs:
                for name, value in zip(model.input_names, inputs):
                    h5_dump(name, value, idx)

            # Store positions
            for name, value in next(meta_reader).items():
                h5_dump(name, value, idx)

            idx += batch_size
        progbar.close()

        out_file.close()
        log.info('Done!')

        return 0
Esempio n. 4
0
    def main(self, name, opts):
        logging.basicConfig(filename=opts.log_file,
                            format='%(levelname)s (%(asctime)s): %(message)s')
        log = logging.getLogger(name)
        if opts.verbose:
            log.setLevel(logging.DEBUG)
        else:
            log.setLevel(logging.INFO)
            log.debug(opts)

        if opts.seed is not None:
            np.random.seed(opts.seed)

        if not opts.model_files:
            raise ValueError('No model files provided!')

        log.info('Loading model ...')
        K.set_learning_phase(0)
        model = mod.load_model(opts.model_files)

        # Get DNA layer.
        dna_layer = None
        for layer in model.layers:
            if layer.name == 'dna':
                dna_layer = layer
                break
        if not dna_layer:
            raise ValueError('The provided model is not a DNA model!')

        # Create output vector.
        outputs = []
        for output in model.outputs:
            outputs.append(K.reshape(output, (-1, 1)))
        outputs = K.concatenate(outputs, axis=1)

        # Compute gradient of outputs wrt. DNA layer.
        grads = []
        for name in opts.targets:
            if name == 'mean':
                target = K.mean(outputs, axis=1)
            elif name == 'var':
                target = K.var(outputs, axis=1)
            else:
                raise ValueError('Invalid effect size "%s"!' % name)
            grad = K.gradients(target, dna_layer.output)
            grads.extend(grad)
        grad_fun = K.function(model.inputs, grads)

        log.info('Reading data ...')
        nb_sample = dat.get_nb_sample(opts.data_files, opts.nb_sample)
        replicate_names = dat.get_replicate_names(
            opts.data_files[0],
            regex=opts.replicate_names,
            nb_key=opts.nb_replicate)
        data_reader = mod.data_reader_from_model(
            model, outputs=False, replicate_names=replicate_names)
        data_reader = data_reader(opts.data_files,
                                  nb_sample=nb_sample,
                                  batch_size=opts.batch_size,
                                  loop=False,
                                  shuffle=False)

        meta_reader = hdf.reader(opts.data_files, ['chromo', 'pos'],
                                 nb_sample=nb_sample,
                                 batch_size=opts.batch_size,
                                 loop=False,
                                 shuffle=False)

        out_file = h5.File(opts.out_file, 'w')
        out_group = out_file

        def h5_dump(path, data, idx, dtype=None, compression='gzip'):
            if path not in out_group:
                if dtype is None:
                    dtype = data.dtype
                out_group.create_dataset(
                    name=path,
                    shape=[nb_sample] + list(data.shape[1:]),
                    dtype=dtype,
                    compression=compression
                )
            out_group[path][idx:idx+len(data)] = data

        log.info('Computing effects ...')
        progbar = ProgressBar(nb_sample, log.info)
        idx = 0
        for inputs in data_reader:
            if isinstance(inputs, dict):
                inputs = list(inputs.values())
            batch_size = len(inputs[0])
            progbar.update(batch_size)

            # Compute gradients.
            grads = grad_fun(inputs)

            # Slice window at center.
            if opts.dna_wlen:
                for i, grad in enumerate(grads):
                    delta = opts.dna_wlen // 2
                    ctr = grad.shape[1] // 2
                    grads[i] = grad[:, (ctr-delta):(ctr+delta+1)]

            # Aggregate effects in window
            if opts.agg_effects:
                for i, grad in enumerate(grads):
                    if opts.agg_effects == 'mean':
                        grad = grad.mean(axis=1)
                    elif opts.agg_effects == 'wmean':
                        weights = linear_weights(grad.shape[1])
                        grad = np.average(grad, axis=1, weights=weights)
                    elif opts.agg_effects == 'max':
                        grad = grad.max(axis=1)
                    else:
                        tmp = 'Invalid function "%s"!' % (opts.agg_effects)
                        raise ValueError(tmp)
                    grads[i] = grad

            # Write computed effects
            for name, grad in zip(opts.targets, grads):
                h5_dump(name, grad, idx)

            # Store inputs
            if opts.store_inputs:
                for name, value in zip(model.input_names, inputs):
                    h5_dump(name, value, idx)

            # Store positions
            for name, value in next(meta_reader).items():
                h5_dump(name, value, idx)

            idx += batch_size
        progbar.close()

        out_file.close()
        log.info('Done!')

        return 0
Esempio n. 5
0
    def main(self, name, opts):
        logging.basicConfig(filename=opts.log_file,
                            format='%(levelname)s (%(asctime)s): %(message)s')
        log = logging.getLogger(name)
        if opts.verbose:
            log.setLevel(logging.DEBUG)
        else:
            log.setLevel(logging.INFO)

        if opts.seed is not None:
            np.random.seed(opts.seed)
            random.seed(opts.seed)

        self.log = log
        self.opts = opts

        make_dir(opts.out_dir)

        log.info('Building model ...')
        model = self.build_model()

        model.summary()
        self.set_trainability(model)
        if opts.filter_weights:
            conv_layer = mod.get_first_conv_layer(model.layers)
            log.info('Initializing filters of %s ...' % conv_layer.name)
            self.init_filter_weights(opts.filter_weights, conv_layer)
        mod.save_model(model, os.path.join(opts.out_dir, 'model.json'))

        log.info('Computing output statistics ...')
        output_names = model.output_names

        output_stats = OrderedDict()

        if opts.no_class_weights:
            class_weights = None
        else:
            class_weights = OrderedDict()

        for name in output_names:
            output = hdf.read(opts.train_files, 'outputs/%s' % name,
                              nb_sample=opts.nb_train_sample)
            output = list(output.values())[0]
            output_stats[name] = get_output_stats(output)
            if class_weights is not None:
                class_weights[name] = get_output_class_weights(name, output)

        self.print_output_stats(output_stats)
        if class_weights:
            self.print_class_weights(class_weights)

        output_weights = None
        if opts.output_weights:
            log.info('Initializing output weights ...')
            output_weights = get_output_weights(output_names,
                                                opts.output_weights)
            print('Output weights:')
            for output_name in output_names:
                if output_name in output_weights:
                    print('%s: %.2f' % (output_name,
                                        output_weights[output_name]))
            print()

        self.metrics = dict()
        for output_name in output_names:
            self.metrics[output_name] = get_metrics(output_name)

        optimizer = Adam(lr=opts.learning_rate)
        model.compile(optimizer=optimizer,
                      loss=mod.get_objectives(output_names),
                      loss_weights=output_weights,
                      metrics=self.metrics)

        log.info('Loading data ...')
        replicate_names = dat.get_replicate_names(
            opts.train_files[0],
            regex=opts.replicate_names,
            nb_key=opts.nb_replicate)
        data_reader = mod.data_reader_from_model(
            model, replicate_names=replicate_names)
        nb_train_sample = dat.get_nb_sample(opts.train_files,
                                            opts.nb_train_sample)
        train_data = data_reader(opts.train_files,
                                 class_weights=class_weights,
                                 batch_size=opts.batch_size,
                                 nb_sample=nb_train_sample,
                                 shuffle=True,
                                 loop=True)

        if opts.val_files:
            nb_val_sample = dat.get_nb_sample(opts.val_files,
                                              opts.nb_val_sample)
            val_data = data_reader(opts.val_files,
                                   batch_size=opts.batch_size,
                                   nb_sample=nb_val_sample,
                                   shuffle=False,
                                   loop=True)
        else:
            val_data = None
            nb_val_sample = None

        log.info('Initializing callbacks ...')
        callbacks = self.get_callbacks()

        log.info('Training model ...')
        print()
        print('Training samples: %d' % nb_train_sample)
        if nb_val_sample:
            print('Validation samples: %d' % nb_val_sample)
        model.fit_generator(
            train_data,
            steps_per_epoch=nb_train_sample // opts.batch_size,
            epochs=opts.nb_epoch,
            callbacks=callbacks,
            validation_data=val_data,
            validation_steps=nb_val_sample // opts.batch_size,
            max_queue_size=opts.data_q_size,
            workers=opts.data_nb_worker,
            verbose=0)

        print('\nTraining set performance:')
        print(format_table(self.perf_logger.epoch_logs,
                           precision=LOG_PRECISION))

        if self.perf_logger.val_epoch_logs:
            print('\nValidation set performance:')
            print(format_table(self.perf_logger.val_epoch_logs,
                               precision=LOG_PRECISION))

        # Restore model with highest validation performance
        filename = os.path.join(opts.out_dir, 'model_weights_val.h5')
        if os.path.isfile(filename):
            model.load_weights(filename)

        # Delete metrics since they cause problems when loading the model
        # from HDF5 file. Metrics can be loaded from json + weights file.
        model.metrics = None
        model.metrics_names = None
        model.metrics_tensors = None
        model.save(os.path.join(opts.out_dir, 'model.h5'))

        log.info('Done!')

        return 0
Esempio n. 6
0
    def main(self, name, opts):
        logging.basicConfig(filename=opts.log_file,
                            format='%(levelname)s (%(asctime)s): %(message)s')
        log = logging.getLogger(name)
        if opts.verbose:
            log.setLevel(logging.DEBUG)
        else:
            log.setLevel(logging.INFO)

        if not opts.model_files:
            raise ValueError('No model files provided!')

        log.info('Loading model ...')
        model = mod.load_model(opts.model_files)

        log.info('Loading data ...')
        nb_sample = dat.get_nb_sample(opts.data_files, opts.nb_sample)
        replicate_names = dat.get_replicate_names(
            opts.data_files[0],
            regex=opts.replicate_names,
            nb_key=opts.nb_replicate)
        data_reader = mod.data_reader_from_model(
            model, replicate_names, replicate_names=replicate_names)

        data_reader = data_reader(opts.data_files,
                                  nb_sample=nb_sample,
                                  batch_size=opts.batch_size,
                                  loop=False, shuffle=False)

        meta_reader = hdf.reader(opts.data_files, ['chromo', 'pos'],
                                 nb_sample=nb_sample,
                                 batch_size=opts.batch_size,
                                 loop=False, shuffle=False)

        log.info('Predicting ...')
        data = dict()
        progbar = ProgressBar(nb_sample, log.info)
        for inputs, outputs, weights in data_reader:
            batch_size = len(list(inputs.values())[0])
            progbar.update(batch_size)

            preds = to_list(model.predict(inputs))

            data_batch = dict()
            data_batch['preds'] = dict()
            data_batch['outputs'] = dict()
            for i, name in enumerate(model.output_names):
                data_batch['preds'][name] = preds[i].squeeze()
                data_batch['outputs'][name] = outputs[name].squeeze()

            for name, value in next(meta_reader).items():
                data_batch[name] = value
            dat.add_to_dict(data_batch, data)
        progbar.close()
        data = dat.stack_dict(data)

        report = ev.evaluate_outputs(data['outputs'], data['preds'])

        if opts.out_report:
            report.to_csv(opts.out_report, sep='\t', index=False)

        report = ev.unstack_report(report)
        print(report.to_string())

        if opts.out_data:
            hdf.write_data(data, opts.out_data)

        log.info('Done!')

        return 0
Esempio n. 7
0
    def main(self, name, opts):
        logging.basicConfig(filename=opts.log_file,
                            format='%(levelname)s (%(asctime)s): %(message)s')
        log = logging.getLogger(name)
        if opts.verbose:
            log.setLevel(logging.DEBUG)
        else:
            log.setLevel(logging.INFO)

        if not opts.model_files:
            raise ValueError('No model files provided!')

        log.info('Loading model ...')
        model = mod.load_model(opts.model_files)

        log.info('Loading data ...')
        nb_sample = dat.get_nb_sample(opts.data_files, opts.nb_sample)
        replicate_names = dat.get_replicate_names(
            opts.data_files[0],
            regex=opts.replicate_names,
            nb_key=opts.nb_replicate)
        data_reader = mod.data_reader_from_model(
            model, replicate_names, replicate_names=replicate_names)

        # Seed used since unobserved input CpG states are randomly sampled
        if opts.seed is not None:
            np.random.seed(opts.seed)
            random.seed(opts.seed)

        data_reader = data_reader(opts.data_files,
                                  nb_sample=nb_sample,
                                  batch_size=opts.batch_size,
                                  loop=False, shuffle=False)

        meta_reader = hdf.reader(opts.data_files, ['chromo', 'pos'],
                                 nb_sample=nb_sample,
                                 batch_size=opts.batch_size,
                                 loop=False, shuffle=False)

        writer = None
        if opts.out_data:
            writer = H5Writer(opts.out_data, nb_sample)

        log.info('Predicting ...')
        nb_tot = 0
        nb_eval = 0
        data_eval = dict()
        perf_eval = []
        progbar = ProgressBar(nb_sample, log.info)
        for inputs, outputs, weights in data_reader:
            batch_size = len(list(inputs.values())[0])
            nb_tot += batch_size
            progbar.update(batch_size)

            preds = to_list(model.predict(inputs))

            data_batch = dict()
            data_batch['preds'] = dict()
            data_batch['outputs'] = dict()
            for i, name in enumerate(model.output_names):
                data_batch['preds'][name] = preds[i].squeeze()
                data_batch['outputs'][name] = outputs[name].squeeze()

            for name, value in six.iteritems(next(meta_reader)):
                data_batch[name] = value

            if writer:
                writer.write_dict(data_batch)

            nb_eval += batch_size
            dat.add_to_dict(data_batch, data_eval)

            if nb_tot >= nb_sample or \
                    (opts.eval_size and nb_eval >= opts.eval_size):
                data_eval = dat.stack_dict(data_eval)
                perf_eval.append(ev.evaluate_outputs(data_eval['outputs'],
                                                     data_eval['preds']))
                data_eval = dict()
                nb_eval = 0

        progbar.close()
        if writer:
            writer.close()

        report = pd.concat(perf_eval)
        report = report.groupby(['metric', 'output']).mean().reset_index()

        if opts.out_report:
            report.to_csv(opts.out_report, sep='\t', index=False)

        report = ev.unstack_report(report)
        print(report.to_string())

        log.info('Done!')

        return 0