Esempio n. 1
0
def train_from_cfg(cfg: DictConfig) -> Type[nn.Module]:
    rundir = os.getcwd()  # done by hydra

    device = torch.device(
        "cuda:" +
        str(cfg.compute.gpu_id) if torch.cuda.is_available() else "cpu")
    torch.cuda.set_device(device)
    log.info('Training sequence model...')

    dataloaders = get_dataloaders_from_cfg(cfg, model_type='sequence')
    utils.save_dict_to_yaml(dataloaders['split'],
                            os.path.join(rundir, 'split.yaml'))
    log.debug('Num training batches {}, num val: {}'.format(
        len(dataloaders['train']), len(dataloaders['val'])))
    model = build_model_from_cfg(cfg,
                                 dataloaders['num_features'],
                                 dataloaders['num_classes'],
                                 pos=dataloaders['pos'],
                                 neg=dataloaders['neg'])
    weights = projects.get_weightfile_from_cfg(cfg, model_type='sequence')
    if weights is not None:
        model = utils.load_weights(model, weights)
    model = model.to(device)
    log.info('Total trainable params: {:,}'.format(
        utils.get_num_parameters(model)))
    optimizer = optim.Adam(filter(lambda p: p.requires_grad,
                                  model.parameters()),
                           lr=cfg.train.lr)
    torch.save(model, os.path.join(rundir,
                                   cfg.sequence.arch + '_definition.pt'))

    stopper = get_stopper(cfg)
    scheduler = initialize_scheduler(
        optimizer,
        cfg,
        mode='max',
        reduction_factor=cfg.train.reduction_factor)
    metrics = get_metrics(rundir,
                          num_classes=len(cfg.project.class_names),
                          num_parameters=utils.get_num_parameters(model),
                          key_metric='f1')
    criterion = get_criterion(cfg.feature_extractor.final_activation,
                              dataloaders, device)
    steps_per_epoch = dict(cfg.train.steps_per_epoch)

    model = train(model,
                  dataloaders,
                  criterion,
                  optimizer,
                  metrics,
                  scheduler,
                  rundir,
                  stopper,
                  device,
                  steps_per_epoch,
                  final_activation=cfg.feature_extractor.final_activation,
                  sequence=True,
                  normalizer=None)
Esempio n. 2
0
def get_cnn(model_name: str,
            in_channels: int = 3,
            reload_imagenet: bool = True,
            num_classes: int = 1000,
            freeze: bool = False,
            pos: np.ndarray = None,
            neg: np.ndarray = None,
            **kwargs):
    """ Initializes a pretrained CNN from Torchvision.

    Currently supported models:
    AlexNet, DenseNet, Inception, VGGXX, ResNets, SqueezeNets, and Resnet3Ds (not torchvision)

    Args:
        model_name (str):
        in_channels (int): number of input channels. If not 3, the per-channel weights will be averaged and replicated
            in_channels times
        reload_imagenet (bool): if True, reload imagenet weights from Torchvision
        num_classes (int): number of output classes (neurons in final FC layer)
        freeze (bool): if true, model weights will be freezed
        pos (np.ndarray): number of positive examples in training set. Used for custom bias initialization in
            final layer
        neg (np.ndarray): number of negative examples in training set. Used for custom bias initialization in
            final layer
        **kwargs (): passed to model initialization function

    Returns:
        model: a pytorch CNN

    """
    model = models[model_name](pretrained=reload_imagenet,
                               in_channels=in_channels,
                               **kwargs)

    if freeze:
        log.info('Before freezing: {:,}'.format(
            utils.get_num_parameters(model)))
        for param in model.parameters():
            param.requires_grad = False
        log.info('After freezing: {:,}'.format(
            utils.get_num_parameters(model)))

    # we have to use the pop function because the final layer in these models has different names
    model, num_features, final_layer = pop(model, model_name, 1)
    linear_layer = nn.Linear(num_features, num_classes)
    # initialize bias to roughly approximate the probability of positive examples in the training set
    # https://www.tensorflow.org/tutorials/structured_data/imbalanced_data#optional_set_the_correct_initial_bias
    if pos is not None and neg is not None:
        with torch.no_grad():
            bias = np.nan_to_num(np.log(pos / neg), neginf=0.0)
            bias = torch.nn.Parameter(torch.from_numpy(bias).float())
            linear_layer.bias = bias
            log.info('Custom bias: {}'.format(linear_layer.bias))
    model = nn.Sequential(model, linear_layer)
    return model
Esempio n. 3
0
def flow_generator_train(cfg: DictConfig) -> nn.Module:
    """Trains flow generator models from a configuration. 

    Parameters
    ----------
    cfg : DictConfig
        Configuration, e.g. that returned by deepethogram.configration.make_flow_generator_train_cfg

    Returns
    -------
    nn.Module
        Trained flow generator
    """
    cfg = projects.setup_run(cfg)
    log.info('args: {}'.format(' '.join(sys.argv)))
    # only two custom overwrites of the configuration file

    # allow for editing
    OmegaConf.set_struct(cfg, False)
    # second, use the model directory to find the most recent run of each model type
    # cfg = projects.overwrite_cfg_with_latest_weights(cfg, cfg.project.model_path, model_type='flow_generator')
    # SHOULD NEVER MODIFY / MAKE ASSIGNMENTS TO THE CFG OBJECT AFTER RIGHT HERE!
    log.info('configuration used ~~~~~')
    log.info(OmegaConf.to_yaml(cfg))

    datasets, data_info = get_datasets_from_cfg(
        cfg, 'flow_generator', input_images=cfg.flow_generator.n_rgb)
    flow_generator = build_model_from_cfg(cfg)
    log.info('Total trainable params: {:,}'.format(
        utils.get_num_parameters(flow_generator)))
    utils.save_dict_to_yaml(data_info['split'],
                            os.path.join(os.getcwd(), 'split.yaml'))
    flow_weights = deepethogram.projects.get_weightfile_from_cfg(
        cfg, 'flow_generator')
    if flow_weights is not None:
        print('reloading weights...')
        flow_generator = utils.load_weights(flow_generator,
                                            flow_weights,
                                            device='cpu')

    stopper = get_stopper(cfg)
    metrics = get_metrics(cfg, os.getcwd(),
                          utils.get_num_parameters(flow_generator))
    lightning_module = OpticalFlowLightning(flow_generator, cfg, datasets,
                                            metrics,
                                            viz.visualize_logger_optical_flow)

    trainer = get_trainer_from_cfg(cfg, lightning_module, stopper)
    trainer.fit(lightning_module)
    return flow_generator
Esempio n. 4
0
def sequence_train(cfg: DictConfig) -> nn.Module:
    """Trains sequence models from a configuration. 

    Parameters
    ----------
    cfg : DictConfig
        Configuration, e.g. that returned by deepethogram.configration.make_sequence_train_cfg

    Returns
    -------
    nn.Module
        Trained sequence model
    """
    cfg = projects.setup_run(cfg)
    log.info('args: {}'.format(' '.join(sys.argv)))

    if cfg.sequence.latent_name is None:
        cfg.sequence.latent_name = cfg.feature_extractor.arch
        # allow for editing
    OmegaConf.set_struct(cfg, False)
    log.info('Configuration used: ')
    log.info(OmegaConf.to_yaml(cfg))

    datasets, data_info = get_datasets_from_cfg(cfg, 'sequence')
    utils.save_dict_to_yaml(data_info['split'], os.path.join(os.getcwd(), 'split.yaml'))
    model = build_model_from_cfg(cfg,
                                 data_info['num_features'],
                                 data_info['num_classes'],
                                 pos=data_info['pos'],
                                 neg=data_info['neg'])
    weights = projects.get_weightfile_from_cfg(cfg, model_type='sequence')
    if weights is not None:
        model = utils.load_weights(model, weights)
    log.debug('model arch: {}'.format(model))
    log.info('Total trainable params: {:,}'.format(utils.get_num_parameters(model)))
    stopper = get_stopper(cfg)

    metrics = get_metrics(os.getcwd(),
                          data_info['num_classes'],
                          num_parameters=utils.get_num_parameters(model),
                          key_metric='f1_class_mean',
                          num_workers=cfg.compute.metrics_workers)
    criterion = get_criterion(cfg, model, data_info)
    lightning_module = SequenceLightning(model, cfg, datasets, metrics, criterion)
    # change auto batch size parameters because large sequences can overflow RAM
    trainer = get_trainer_from_cfg(cfg, lightning_module, stopper)
    trainer.fit(lightning_module)
    return model
Esempio n. 5
0
def train_from_cfg(cfg: DictConfig) -> Type[nn.Module]:
    device = torch.device(
        "cuda:" +
        str(cfg.compute.gpu_id) if torch.cuda.is_available() else "cpu")
    if device != 'cpu': torch.cuda.set_device(device)

    log.info('Training flow generator....')

    dataloaders = get_dataloaders_from_cfg(
        cfg,
        model_type='flow_generator',
        input_images=cfg.flow_generator.n_rgb)

    # print(dataloaders)
    log.info('Num training batches {}, num val: {}'.format(
        len(dataloaders['train']), len(dataloaders['val'])))

    flow_generator = build_model_from_cfg(cfg)
    flow_generator = flow_generator.to(device)

    log.info('Total trainable params: {:,}'.format(
        utils.get_num_parameters(flow_generator)))

    rundir = os.getcwd()  # this is configured by hydra
    # save model definition
    torch.save(
        flow_generator,
        os.path.join(rundir, cfg.flow_generator.arch + '_definition.pt'))
    utils.save_dict_to_yaml(dataloaders['split'],
                            os.path.join(rundir, 'split.yaml'))

    optimizer = optim.Adam(filter(lambda p: p.requires_grad,
                                  flow_generator.parameters()),
                           lr=cfg.train.lr)
    flow_weights = deepethogram.projects.get_weightfile_from_cfg(
        cfg, 'flow_generator')
    if flow_weights is not None:
        print('reloading weights...')
        flow_generator = utils.load_weights(flow_generator,
                                            flow_weights,
                                            device=device)

    # stopper, early_stopping_begins = get_stopper(cfg)
    stopper = get_stopper(cfg)
    scheduler = initialize_scheduler(optimizer, cfg, mode='min')

    if cfg.flow_generator.loss == 'MotionNet':
        criterion = MotionNetLoss(
            flow_sparsity=cfg.flow_generator.flow_sparsity,
            sparsity_weight=cfg.flow_generator.sparsity_weight,
            smooth_weight_multiplier=cfg.flow_generator.
            smooth_weight_multiplier)
    else:
        raise NotImplementedError

    metrics = get_metrics(cfg, rundir,
                          utils.get_num_parameters(flow_generator))
    reconstructor = Reconstructor(cfg)
    steps_per_epoch = cfg.train.steps_per_epoch
    if cfg.compute.fp16:
        assert torch_amp, 'must install torch 1.6 or greater to use FP16 training'
    flow_generator = train(flow_generator,
                           dataloaders,
                           criterion,
                           optimizer,
                           metrics,
                           scheduler,
                           reconstructor,
                           rundir,
                           stopper,
                           device,
                           num_epochs=cfg.train.num_epochs,
                           steps_per_epoch=steps_per_epoch['train'],
                           steps_per_validation_epoch=steps_per_epoch['val'],
                           steps_per_test_epoch=steps_per_epoch['test'],
                           max_flow=cfg.flow_generator.max,
                           dali=cfg.compute.dali,
                           fp16=cfg.compute.fp16)
    return flow_generator
Esempio n. 6
0
def train_from_cfg(cfg: DictConfig) -> Type[nn.Module]:
    """ train DeepEthogram feature extractors from a configuration object.

    Args:
        cfg (DictConfig): configuration object generated by Hydra

    Returns:
        trained feature extractor
    """
    rundir = os.getcwd()  # done by hydra

    device = torch.device(
        "cuda:" +
        str(cfg.compute.gpu_id) if torch.cuda.is_available() else "cpu")
    if device != 'cpu': torch.cuda.set_device(device)

    flow_generator = build_flow_generator(cfg)
    flow_weights = get_weightfile_from_cfg(cfg, 'flow_generator')
    assert flow_weights is not None, (
        'Must have a valid weightfile for flow generator. Use '
        'deepethogram.flow_generator.train or cfg.reload.latest')
    log.info('loading flow generator from file {}'.format(flow_weights))

    flow_generator = utils.load_weights(flow_generator,
                                        flow_weights,
                                        device=device)
    flow_generator = flow_generator.to(device)

    dataloaders = get_dataloaders_from_cfg(
        cfg,
        model_type='feature_extractor',
        input_images=cfg.feature_extractor.n_flows + 1)

    spatial_classifier, flow_classifier = build_model_from_cfg(
        cfg,
        return_components=True,
        pos=dataloaders['pos'],
        neg=dataloaders['neg'])
    spatial_classifier = spatial_classifier.to(device)

    flow_classifier = flow_classifier.to(device)
    num_classes = len(cfg.project.class_names)

    utils.save_dict_to_yaml(dataloaders['split'],
                            os.path.join(rundir, 'split.yaml'))

    criterion = get_criterion(cfg.feature_extractor.final_activation,
                              dataloaders, device)
    steps_per_epoch = dict(cfg.train.steps_per_epoch)
    metrics = get_metrics(
        rundir,
        num_classes=num_classes,
        num_parameters=utils.get_num_parameters(spatial_classifier))

    dali = cfg.compute.dali

    # training in a curriculum goes as follows:
    # first, we train the spatial classifier, which takes still images as input
    # second, we train the flow classifier, which generates optic flow with the flow_generator model and then classifies
    # it. Thirdly, we will train the whole thing end to end
    # Without the curriculum we just train end to end from the start
    if cfg.feature_extractor.curriculum:
        del dataloaders
        # train spatial model, then flow model, then both end-to-end
        dataloaders = get_dataloaders_from_cfg(
            cfg,
            model_type='feature_extractor',
            input_images=cfg.feature_extractor.n_rgb)
        log.info('Num training batches {}, num val: {}'.format(
            len(dataloaders['train']), len(dataloaders['val'])))
        # we'll use this to visualize our data, because it is loaded z-scored. we want it to be in the range [0-1] or
        # [0-255] for visualization, and for that we need to know mean and std
        normalizer = get_normalizer(cfg,
                                    input_images=cfg.feature_extractor.n_rgb)

        optimizer = optim.Adam(filter(lambda p: p.requires_grad,
                                      spatial_classifier.parameters()),
                               lr=cfg.train.lr,
                               weight_decay=cfg.feature_extractor.weight_decay)

        spatialdir = os.path.join(rundir, 'spatial')
        if not os.path.isdir(spatialdir):
            os.makedirs(spatialdir)
        stopper = get_stopper(cfg)
        # we're using validation loss as our key metric
        scheduler = initialize_scheduler(
            optimizer,
            cfg,
            mode='min',
            reduction_factor=cfg.train.reduction_factor)

        log.info('key metric: {}'.format(metrics.key_metric))
        spatial_classifier = train(
            spatial_classifier,
            dataloaders,
            criterion,
            optimizer,
            metrics,
            scheduler,
            spatialdir,
            stopper,
            device,
            steps_per_epoch,
            final_activation=cfg.feature_extractor.final_activation,
            sequence=False,
            normalizer=normalizer,
            dali=dali)

        log.info('Training flow stream....')
        input_images = cfg.feature_extractor.n_flows + 1
        del dataloaders
        dataloaders = get_dataloaders_from_cfg(cfg,
                                               model_type='feature_extractor',
                                               input_images=input_images)

        normalizer = get_normalizer(cfg, input_images=input_images)
        log.info('Num training batches {}, num val: {}'.format(
            len(dataloaders['train']), len(dataloaders['val'])))
        flowdir = os.path.join(rundir, 'flow')
        if not os.path.isdir(flowdir):
            os.makedirs(flowdir)

        flow_generator_and_classifier = FlowOnlyClassifier(
            flow_generator, flow_classifier).to(device)
        optimizer = optim.Adam(filter(lambda p: p.requires_grad,
                                      flow_classifier.parameters()),
                               lr=cfg.train.lr,
                               weight_decay=cfg.feature_extractor.weight_decay)

        stopper = get_stopper(cfg)
        # we're using validation loss as our key metric
        scheduler = initialize_scheduler(
            optimizer,
            cfg,
            mode='min',
            reduction_factor=cfg.train.reduction_factor)
        flow_generator_and_classifier = train(
            flow_generator_and_classifier,
            dataloaders,
            criterion,
            optimizer,
            metrics,
            scheduler,
            flowdir,
            stopper,
            device,
            steps_per_epoch,
            final_activation=cfg.feature_extractor.final_activation,
            sequence=False,
            normalizer=normalizer,
            dali=dali)
        flow_classifier = flow_generator_and_classifier.flow_classifier
        # overwrite checkpoint
        utils.checkpoint(flow_classifier, flowdir, stopper.epoch_counter)

    model = HiddenTwoStream(flow_generator,
                            spatial_classifier,
                            flow_classifier,
                            cfg.feature_extractor.arch,
                            fusion_style=cfg.feature_extractor.fusion,
                            num_classes=num_classes).to(device)
    # setting the mode to end-to-end would allow to backprop gradients into the flow generator itself
    # the paper does this, but I don't expect that users would have enough data for this to make sense
    model.set_mode('classifier')
    log.info('Training end to end...')
    input_images = cfg.feature_extractor.n_flows + 1
    dataloaders = get_dataloaders_from_cfg(cfg,
                                           model_type='feature_extractor',
                                           input_images=input_images)
    normalizer = get_normalizer(cfg, input_images=input_images)

    optimizer = optim.Adam(filter(lambda p: p.requires_grad,
                                  model.parameters()),
                           lr=cfg.train.lr,
                           weight_decay=cfg.feature_extractor.weight_decay)
    stopper = get_stopper(cfg)
    # we're using validation loss as our key metric
    scheduler = initialize_scheduler(
        optimizer,
        cfg,
        mode='min',
        reduction_factor=cfg.train.reduction_factor)
    log.info('Total trainable params: {:,}'.format(
        utils.get_num_parameters(model)))
    model = train(model,
                  dataloaders,
                  criterion,
                  optimizer,
                  metrics,
                  scheduler,
                  rundir,
                  stopper,
                  device,
                  steps_per_epoch,
                  final_activation=cfg.feature_extractor.final_activation,
                  sequence=False,
                  normalizer=normalizer,
                  dali=dali)
    utils.save_hidden_two_stream(model, rundir, dict(cfg),
                                 stopper.epoch_counter)
    return model
Esempio n. 7
0
def feature_extractor_train(cfg: DictConfig) -> nn.Module:
    """Trains feature extractor models from a configuration. 

    Parameters
    ----------
    cfg : DictConfig
        Configuration, e.g. that returned by deepethogram.configration.make_feature_extractor_train_cfg

    Returns
    -------
    nn.Module
        Trained feature extractor
    """
    # rundir = os.getcwd()
    cfg = projects.setup_run(cfg)

    log.info('args: {}'.format(' '.join(sys.argv)))
    # change the project paths from relative to absolute
    # allow for editing
    OmegaConf.set_struct(cfg, False)
    # SHOULD NEVER MODIFY / MAKE ASSIGNMENTS TO THE CFG OBJECT AFTER RIGHT HERE!
    log.info('configuration used ~~~~~')
    log.info(OmegaConf.to_yaml(cfg))

    # we build flow generator independently because you might want to load it from a different location
    flow_generator = build_flow_generator(cfg)
    flow_weights = projects.get_weightfile_from_cfg(cfg, 'flow_generator')
    assert flow_weights is not None, (
        'Must have a valid weightfile for flow generator. Use '
        'deepethogram.flow_generator.train or cfg.reload.latest')
    log.info('loading flow generator from file {}'.format(flow_weights))

    flow_generator = utils.load_weights(flow_generator, flow_weights)

    _, data_info = get_datasets_from_cfg(
        cfg,
        model_type='feature_extractor',
        input_images=cfg.feature_extractor.n_flows + 1)

    model_parts = build_model_from_cfg(cfg,
                                       pos=data_info['pos'],
                                       neg=data_info['neg'])
    _, spatial_classifier, flow_classifier, fusion, model = model_parts
    # log.info('model: {}'.format(model))

    num_classes = len(cfg.project.class_names)

    utils.save_dict_to_yaml(data_info['split'],
                            os.path.join(cfg.run.dir, 'split.yaml'))

    metrics = get_metrics(
        cfg.run.dir,
        num_classes=num_classes,
        num_parameters=utils.get_num_parameters(spatial_classifier),
        key_metric='f1_class_mean_nobg',
        num_workers=cfg.compute.metrics_workers)

    # cfg.compute.batch_size will be changed by the automatic batch size finder, possibly. store here so that
    # with each step of the curriculum, we can auto-tune it
    original_batch_size = cfg.compute.batch_size
    original_lr = cfg.train.lr

    # training in a curriculum goes as follows:
    # first, we train the spatial classifier, which takes still images as input
    # second, we train the flow classifier, which generates optic flow with the flow_generator model and then classifies
    # it. Thirdly, we will train the whole thing end to end
    # Without the curriculum we just train end to end from the start
    if cfg.feature_extractor.curriculum:
        # train spatial model, then flow model, then both end-to-end
        # dataloaders = get_dataloaders_from_cfg(cfg, model_type='feature_extractor',
        #                                        input_images=cfg.feature_extractor.n_rgb)
        datasets, data_info = get_datasets_from_cfg(
            cfg,
            model_type='feature_extractor',
            input_images=cfg.feature_extractor.n_rgb)
        stopper = get_stopper(cfg)

        criterion = get_criterion(cfg, spatial_classifier, data_info)

        lightning_module = HiddenTwoStreamLightning(spatial_classifier, cfg,
                                                    datasets, metrics,
                                                    criterion)
        trainer = get_trainer_from_cfg(cfg, lightning_module, stopper)
        # this horrible syntax is because we just changed our configuration's batch size and learning rate, if they are
        # set to auto. so we need to re-instantiate our lightning module
        # https://pytorch-lightning.readthedocs.io/en/latest/lr_finder.html?highlight=auto%20scale%20learning%20rate
        # I tried to do this without re-creating module, but finding the learning rate increments the epoch??
        # del lightning_module
        # log.info('epoch num: {}'.format(trainer.current_epoch))
        # lightning_module = HiddenTwoStreamLightning(spatial_classifier, cfg, datasets, metrics, criterion)
        trainer.fit(lightning_module)

        # free RAM. note: this doesn't do much
        log.info('free ram')
        del datasets, lightning_module, trainer, stopper, data_info
        torch.cuda.empty_cache()
        gc.collect()

        # return

        datasets, data_info = get_datasets_from_cfg(
            cfg,
            model_type='feature_extractor',
            input_images=cfg.feature_extractor.n_flows + 1)
        # re-initialize stopper so that it doesn't think we need to stop due to the previous model
        stopper = get_stopper(cfg)
        cfg.compute.batch_size = original_batch_size
        cfg.train.lr = original_lr

        # this class will freeze the flow generator
        flow_generator_and_classifier = FlowOnlyClassifier(
            flow_generator, flow_classifier)
        criterion = get_criterion(cfg, flow_generator_and_classifier,
                                  data_info)
        lightning_module = HiddenTwoStreamLightning(
            flow_generator_and_classifier, cfg, datasets, metrics, criterion)
        trainer = get_trainer_from_cfg(cfg, lightning_module, stopper)
        # lightning_module = HiddenTwoStreamLightning(flow_generator_and_classifier, cfg, datasets, metrics, criterion)
        trainer.fit(lightning_module)

        del datasets, lightning_module, trainer, stopper, data_info
        torch.cuda.empty_cache()
        gc.collect()

    torch.cuda.empty_cache()
    gc.collect()

    model = HiddenTwoStream(flow_generator, spatial_classifier,
                            flow_classifier, fusion,
                            cfg.feature_extractor.arch)
    model.set_mode('classifier')
    datasets, data_info = get_datasets_from_cfg(
        cfg,
        model_type='feature_extractor',
        input_images=cfg.feature_extractor.n_flows + 1)
    criterion = get_criterion(cfg, model, data_info)
    stopper = get_stopper(cfg)
    cfg.compute.batch_size = original_batch_size
    cfg.train.lr = original_lr

    # log.warning('SETTING ANAOMALY DETECTION TO TRUE! WILL SLOW DOWN.')
    # torch.autograd.set_detect_anomaly(True)

    lightning_module = HiddenTwoStreamLightning(model, cfg, datasets, metrics,
                                                criterion)

    trainer = get_trainer_from_cfg(cfg, lightning_module, stopper)
    # see above for horrible syntax explanation
    # lightning_module = HiddenTwoStreamLightning(model, cfg, datasets, metrics, criterion)
    trainer.fit(lightning_module)
    # trainer.test(model=lightning_module)
    return model