Esempio n. 1
0
def slide_info(display_all_properties=False):
  """
  Display information (such as properties) about training images.
  Args:
    display_all_properties: If True, display all available slide properties.
  """
  t = Time()

  num_train_images = get_num_training_slides()
  obj_pow_20_list = []
  obj_pow_40_list = []
  obj_pow_other_list = []
  for slide_num in range(1, num_train_images + 1):
    slide_filepath = get_training_slide_path(slide_num)
    print("\nOpening Slide #%d: %s" % (slide_num, slide_filepath))
    slide = open_slide(slide_filepath)
    print("Level count: %d" % slide.level_count)
    print("Level dimensions: " + str(slide.level_dimensions))
    print("Level downsamples: " + str(slide.level_downsamples))
    print("Dimensions: " + str(slide.dimensions))
    objective_power = int(slide.properties[openslide.PROPERTY_NAME_OBJECTIVE_POWER])
    print("Objective power: " + str(objective_power))
    if objective_power == 20:
      obj_pow_20_list.append(slide_num)
    elif objective_power == 40:
      obj_pow_40_list.append(slide_num)
    else:
      obj_pow_other_list.append(slide_num)
    print("Associated images:")
    for ai_key in slide.associated_images.keys():
      print("  " + str(ai_key) + ": " + str(slide.associated_images.get(ai_key)))
    print("Format: " + str(slide.detect_format(slide_filepath)))
    if display_all_properties:
      print("Properties:")
      for prop_key in slide.properties.keys():
        print("  Property: " + str(prop_key) + ", value: " + str(slide.properties.get(prop_key)))

  print("\n\nSlide Magnifications:")
  print("  20x Slides: " + str(obj_pow_20_list))
  print("  40x Slides: " + str(obj_pow_40_list))
  print("  ??x Slides: " + str(obj_pow_other_list) + "\n")

  t.elapsed_display()


# if __name__ == "__main__":
  # show_slide(2)
  # slide_info(display_all_properties=True)
  # slide_stats()

  # training_slide_to_image(4)
  # img_path = get_training_image_path(4)
  # img = open_image(img_path)
  # img.show()

  # slide_to_scaled_pil_image(5)[0].show()
  # singleprocess_training_slides_to_images()
  # multiprocess_training_slides_to_images()
Esempio n. 2
0
def singleprocess_training_slides_to_images():
    """
  Convert all WSI training slides to smaller images using a single process.
  """
    t = Time()

    num_train_images = get_num_training_slides()
    training_slide_range_to_images(1, num_train_images)

    t.elapsed_display()
Esempio n. 3
0
def slide_info(datapath, display_all_properties=False):  ## ap
    """
  Display information (such as properties) about training images.

  Args:
    display_all_properties: If True, display all available slide properties.
  """
    t = Time()

    num_train_images = get_num_training_slides()
    obj_pow_20_list = []
    obj_pow_40_list = []
    obj_pow_other_list = []

    train_images = glob.glob(os.path.join(datapath, '*.svs'))  ## ap

    ## for slide_num in range(1, num_train_images + 1):
    for slide_filepath in train_images:  ## ap
        slide_num = int(
            os.path.basename(slide_filepath).split('.svs')[0])  ## ap
        ## slide_filepath = get_training_slide_path(slide_num)  ## ap
        print("\nOpening Slide #%d: %s" % (slide_num, slide_filepath))
        slide = open_slide(slide_filepath)
        print("Level count: %d" % slide.level_count)
        print("Level dimensions: " + str(slide.level_dimensions))
        print("Level downsamples: " + str(slide.level_downsamples))
        print("Dimensions: " + str(slide.dimensions))
        objective_power = int(
            slide.properties[openslide.PROPERTY_NAME_OBJECTIVE_POWER])
        print("Objective power: " + str(objective_power))
        if objective_power == 20:
            obj_pow_20_list.append(slide_num)
        elif objective_power == 40:
            obj_pow_40_list.append(slide_num)
        else:
            obj_pow_other_list.append(slide_num)
        print("Associated images:")
        for ai_key in slide.associated_images.keys():
            print("  " + str(ai_key) + ": " +
                  str(slide.associated_images.get(ai_key)))
        print("Format: " + str(slide.detect_format(slide_filepath)))
        if display_all_properties:
            print("Properties:")
            for prop_key in slide.properties.keys():
                print("  Property: " + str(prop_key) + ", value: " +
                      str(slide.properties.get(prop_key)))

    print("\n\nSlide Magnifications:")
    print("  20x Slides: " + str(obj_pow_20_list))
    print("  40x Slides: " + str(obj_pow_40_list))
    print("  ??x Slides: " + str(obj_pow_other_list) + "\n")

    t.elapsed_display()
Esempio n. 4
0
def multiprocess_training_slides_to_images():
    """
  Convert all WSI training slides to smaller images using multiple processes (one process per core).
  Each process will process a range of slide numbers.
  """
    timer = Time()

    # how many processes to use
    num_processes = multiprocessing.cpu_count()
    num_processes = 12
    pool = multiprocessing.Pool(num_processes)

    num_train_images = get_num_training_slides()
    if num_processes > num_train_images:
        num_processes = num_train_images
    images_per_process = num_train_images / num_processes

    print("Number of processes: " + str(num_processes))
    print("Number of training images: " + str(num_train_images))

    # each task specifies a range of slides
    tasks = []
    for num_process in range(1, num_processes + 1):
        start_index = (num_process - 1) * images_per_process + 1
        end_index = num_process * images_per_process
        start_index = int(start_index)
        end_index = int(end_index)
        tasks.append((start_index, end_index))
        if start_index == end_index:
            print("Task #" + str(num_process) + ": Process slide " +
                  str(start_index))
        else:
            print("Task #" + str(num_process) + ": Process slides " +
                  str(start_index) + " to " + str(end_index))

    # start tasks
    results = []
    for t in tasks:
        results.append(pool.apply_async(training_slide_range_to_images, t))

    for result in results:
        (start_ind, end_ind) = result.get()
        if start_ind == end_ind:
            print("Done converting slide %d" % start_ind)
        else:
            print("Done converting slides %d through %d" %
                  (start_ind, end_ind))

    timer.elapsed_display()
Esempio n. 5
0
def singleprocess_training_slides_to_images(slides_path,
                                            n_slides: Optional[int] = None
                                            ):  ## ap
    """
  Convert all WSI training slides to smaller images using a single process.
  """
    t = Time()

    ## ap
    # num_train_images = get_num_training_slides()
    # training_slide_range_to_images(1, num_train_images)

    ## ap
    trainig_slides_to_images(slides_path, n_slides=n_slides)

    t.elapsed_display()
Esempio n. 6
0
def slide_stats():
    """
  Display statistics/graphs about training slides.
  """
    t = Time()

    if not os.path.exists(STATS_DIR):
        os.makedirs(STATS_DIR)

    num_train_images = get_num_training_slides()
    slide_stats = []
    for slide_num in range(1, num_train_images + 1):
        slide_filepath = get_training_slide_path(slide_num)
        print("Opening Slide #%d: %s" % (slide_num, slide_filepath))
        slide = open_slide(slide_filepath)
        (width, height) = slide.dimensions
        print("  Dimensions: {:,d} x {:,d}".format(width, height))
        slide_stats.append((width, height))

    max_width = 0
    max_height = 0
    min_width = sys.maxsize
    min_height = sys.maxsize
    total_width = 0
    total_height = 0
    total_size = 0
    which_max_width = 0
    which_max_height = 0
    which_min_width = 0
    which_min_height = 0
    max_size = 0
    min_size = sys.maxsize
    which_max_size = 0
    which_min_size = 0
    for z in range(0, num_train_images):
        (width, height) = slide_stats[z]
        if width > max_width:
            max_width = width
            which_max_width = z + 1
        if width < min_width:
            min_width = width
            which_min_width = z + 1
        if height > max_height:
            max_height = height
            which_max_height = z + 1
        if height < min_height:
            min_height = height
            which_min_height = z + 1
        size = width * height
        if size > max_size:
            max_size = size
            which_max_size = z + 1
        if size < min_size:
            min_size = size
            which_min_size = z + 1
        total_width = total_width + width
        total_height = total_height + height
        total_size = total_size + size

    avg_width = total_width / num_train_images
    avg_height = total_height / num_train_images
    avg_size = total_size / num_train_images

    stats_string = ""
    stats_string += "%-11s {:14,d} pixels (slide #%d)".format(max_width) % (
        "Max width:", which_max_width)
    stats_string += "\n%-11s {:14,d} pixels (slide #%d)".format(max_height) % (
        "Max height:", which_max_height)
    stats_string += "\n%-11s {:14,d} pixels (slide #%d)".format(max_size) % (
        "Max size:", which_max_size)
    stats_string += "\n%-11s {:14,d} pixels (slide #%d)".format(min_width) % (
        "Min width:", which_min_width)
    stats_string += "\n%-11s {:14,d} pixels (slide #%d)".format(min_height) % (
        "Min height:", which_min_height)
    stats_string += "\n%-11s {:14,d} pixels (slide #%d)".format(min_size) % (
        "Min size:", which_min_size)
    stats_string += "\n%-11s {:14,d} pixels".format(
        round(avg_width)) % "Avg width:"
    stats_string += "\n%-11s {:14,d} pixels".format(
        round(avg_height)) % "Avg height:"
    stats_string += "\n%-11s {:14,d} pixels".format(
        round(avg_size)) % "Avg size:"
    stats_string += "\n"
    print(stats_string)

    stats_string += "\nslide number,width,height"
    for i in range(0, len(slide_stats)):
        (width, height) = slide_stats[i]
        stats_string += "\n%d,%d,%d" % (i + 1, width, height)
    stats_string += "\n"

    stats_file = open(os.path.join(STATS_DIR, "stats.txt"), "w")
    stats_file.write(stats_string)
    stats_file.close()

    t.elapsed_display()

    x, y = zip(*slide_stats)
    colors = np.random.rand(num_train_images)
    sizes = [10 for n in range(num_train_images)]
    plt.scatter(x, y, s=sizes, c=colors, alpha=0.7)
    plt.xlabel("width (pixels)")
    plt.ylabel("height (pixels)")
    plt.title("SVS Image Sizes")
    plt.set_cmap("prism")
    plt.tight_layout()
    plt.savefig(os.path.join(STATS_DIR, "svs-image-sizes.png"))
    plt.show()

    plt.clf()
    plt.scatter(x, y, s=sizes, c=colors, alpha=0.7)
    plt.xlabel("width (pixels)")
    plt.ylabel("height (pixels)")
    plt.title("SVS Image Sizes (Labeled with slide numbers)")
    plt.set_cmap("prism")
    for i in range(num_train_images):
        snum = i + 1
        plt.annotate(str(snum), (x[i], y[i]))
    plt.tight_layout()
    plt.savefig(os.path.join(STATS_DIR, "svs-image-sizes-slide-numbers.png"))
    plt.show()

    plt.clf()
    area = [w * h / 1000000 for (w, h) in slide_stats]
    plt.hist(area, bins=64)
    plt.xlabel("width x height (M of pixels)")
    plt.ylabel("# images")
    plt.title("Distribution of image sizes in millions of pixels")
    plt.tight_layout()
    plt.savefig(os.path.join(STATS_DIR, "distribution-of-svs-image-sizes.png"))
    plt.show()

    plt.clf()
    whratio = [w / h for (w, h) in slide_stats]
    plt.hist(whratio, bins=64)
    plt.xlabel("width to height ratio")
    plt.ylabel("# images")
    plt.title("Image shapes (width to height)")
    plt.tight_layout()
    plt.savefig(os.path.join(STATS_DIR, "w-to-h.png"))
    plt.show()

    plt.clf()
    hwratio = [h / w for (w, h) in slide_stats]
    plt.hist(hwratio, bins=64)
    plt.xlabel("height to width ratio")
    plt.ylabel("# images")
    plt.title("Image shapes (height to width)")
    plt.tight_layout()
    plt.savefig(os.path.join(STATS_DIR, "h-to-w.png"))
    plt.show()