def test_trainer_regressor_train_valid_with_multiple_generator_inputs():
        import sys

        from deephyper.benchmark.nas.linearReg.problem import Problem
        from deephyper.nas.trainer import BaseTrainer
        from tensorflow.keras.utils import plot_model
        from deephyper.benchmark.nas.linearRegMultiInputsGen.problem import Problem
        from deephyper.nas.run._util import get_search_space, load_config, setup_data

        config = Problem.space

        load_config(config)

        input_shape, output_shape = setup_data(config)

        search_space = get_search_space(config, input_shape, output_shape, 42)

        config["hyperparameters"]["num_epochs"] = 2

        model = search_space.sample()
        plot_model(model,
                   to_file="trainer_keras_regressor_test.png",
                   show_shapes=True)

        trainer = BaseTrainer(config=config, model=model)

        res = trainer.train()
        assert res != sys.float_info.max
Esempio n. 2
0
def test_trainer_regressor_train_valid_with_multiple_ndarray_inputs():
    from deephyper.benchmark.nas.linearRegMultiInputs.problem import Problem

    config = Problem.space

    config["hyperparameters"]["num_epochs"] = 2

    # load functions
    load_data = util.load_attr_from(config["load_data"]["func"])
    config["load_data"]["func"] = load_data
    config["create_search_space"]["func"] = util.load_attr_from(
        config["create_search_space"]["func"]
    )

    # Loading data
    kwargs = config["load_data"].get("kwargs")
    (tX, ty), (vX, vy) = load_data() if kwargs is None else load_data(**kwargs)

    print("[PARAM] Data loaded")
    # Set data shape
    # interested in shape of data not in length
    input_shape = [np.shape(itX)[1:] for itX in tX]
    output_shape = list(np.shape(ty))[1:]

    config["data"] = {"train_X": tX, "train_Y": ty, "valid_X": vX, "valid_Y": vy}

    search_space = config["create_search_space"]["func"](
        input_shape, output_shape, **config["create_search_space"]["kwargs"]
    )
    arch_seq = [random() for i in range(search_space.num_nodes)]
    print("arch_seq: ", arch_seq)
    search_space.set_ops(arch_seq)
    search_space.plot("trainer_keras_regressor_test.dot")

    if config.get("preprocessing") is not None:
        preprocessing = util.load_attr_from(config["preprocessing"]["func"])
        config["preprocessing"]["func"] = preprocessing
    else:
        config["preprocessing"] = None

    model = search_space.create_model()
    plot_model(model, to_file="trainer_keras_regressor_test.png", show_shapes=True)

    trainer = BaseTrainer(config=config, model=model)

    res = trainer.train()
    assert res != sys.float_info.max
def run_distributed_base_trainer(config):

    physical_devices = tf.config.list_physical_devices("GPU")
    try:
        for i in range(len(physical_devices)):
            tf.config.experimental.set_memory_growth(physical_devices[i], True)
    except:
        # Invalid device or cannot modify virtual devices once initialized.
        pass

    distributed_strategy = tf.distribute.MirroredStrategy()
    n_replicas = distributed_strategy.num_replicas_in_sync

    seed = config["seed"]
    if seed is not None:
        np.random.seed(seed)
        tf.random.set_seed(seed)

    load_config(config)

    # Scale batch size and learning rate according to the number of ranks
    initial_lr = config[a.hyperparameters][a.learning_rate]
    if config[a.hyperparameters].get("lsr_batch_size"):
        batch_size = config[a.hyperparameters][a.batch_size] * n_replicas
    else:
        batch_size = config[a.hyperparameters][a.batch_size]
    if config[a.hyperparameters].get("lsr_learning_rate"):
        learning_rate = config[a.hyperparameters][a.learning_rate] * n_replicas
    else:
        learning_rate = config[a.hyperparameters][a.learning_rate]
    logger.info(
        f"Scaled: 'batch_size' from {config[a.hyperparameters][a.batch_size]} to {batch_size} "
    )
    logger.info(
        f"Scaled: 'learning_rate' from {config[a.hyperparameters][a.learning_rate]} to {learning_rate} "
    )
    config[a.hyperparameters][a.batch_size] = batch_size
    config[a.hyperparameters][a.learning_rate] = learning_rate

    input_shape, output_shape = setup_data(config)

    search_space = get_search_space(config,
                                    input_shape,
                                    output_shape,
                                    seed=seed)

    model_created = False
    with distributed_strategy.scope():
        try:
            model = search_space.sample(config["arch_seq"])
            model_created = True
        except:
            logger.info("Error: Model creation failed...")
            logger.info(traceback.format_exc())
        else:
            # Setup callbacks
            callbacks = []
            cb_requires_valid = False  # Callbacks requires validation data
            callbacks_config = config["hyperparameters"].get("callbacks")
            if callbacks_config is not None:
                for cb_name, cb_conf in callbacks_config.items():
                    if cb_name in default_callbacks_config:
                        default_callbacks_config[cb_name].update(cb_conf)

                        # Special dynamic parameters for callbacks
                        if cb_name == "ModelCheckpoint":
                            default_callbacks_config[cb_name][
                                "filepath"] = f'best_model_{config["id"]}.h5'

                        # replace patience hyperparameter
                        if "patience" in default_callbacks_config[cb_name]:
                            patience = config["hyperparameters"].get(
                                f"patience_{cb_name}")
                            if patience is not None:
                                default_callbacks_config[cb_name][
                                    "patience"] = patience

                        # Import and create corresponding callback
                        Callback = import_callback(cb_name)
                        callbacks.append(
                            Callback(**default_callbacks_config[cb_name]))

                        if cb_name in ["EarlyStopping"]:
                            cb_requires_valid = "val" in cb_conf[
                                "monitor"].split("_")
                    else:
                        logger.error(
                            f"'{cb_name}' is not an accepted callback!")

            # WarmupLR
            if config[a.hyperparameters].get("warmup_lr"):
                warmup_epochs = config[a.hyperparameters].get(
                    "warmup_epochs", 5)
                callbacks.append(
                    LearningRateWarmupCallback(
                        n_replicas=n_replicas,
                        warmup_epochs=warmup_epochs,
                        verbose=0,
                        initial_lr=initial_lr,
                    ))

            trainer = BaseTrainer(config=config, model=model)
            trainer.callbacks.extend(callbacks)

            last_only, with_pred = preproc_trainer(config)
            last_only = last_only and not cb_requires_valid

    if model_created:
        history = trainer.train(with_pred=with_pred, last_only=last_only)

        # save history
        save_history(config.get("log_dir", None), history, config)

        result = compute_objective(config["objective"], history)
    else:
        # penalising actions if model cannot be created
        result = -1
    if result < -10 or np.isnan(result):
        result = -10

    return result
Esempio n. 4
0
def run_base_trainer(config):

    tf.keras.backend.clear_session()
    # tf.config.optimizer.set_jit(True)

    # setup history saver
    if config.get("log_dir") is None:
        config["log_dir"] = "."

    save_dir = os.path.join(config["log_dir"], "save")
    saver = HistorySaver(config, save_dir)
    saver.write_config()
    saver.write_model(None)

    # GPU Configuration if available
    physical_devices = tf.config.list_physical_devices("GPU")
    try:
        for i in range(len(physical_devices)):
            tf.config.experimental.set_memory_growth(physical_devices[i], True)
    except:
        # Invalid device or cannot modify virtual devices once initialized.
        logger.info("error memory growth for GPU device")

    # Threading configuration
    if (
        len(physical_devices) == 0
        and os.environ.get("OMP_NUM_THREADS", None) is not None
    ):
        logger.info(f"OMP_NUM_THREADS is {os.environ.get('OMP_NUM_THREADS')}")
        num_intra = int(os.environ.get("OMP_NUM_THREADS"))
        try:
            tf.config.threading.set_intra_op_parallelism_threads(num_intra)
            tf.config.threading.set_inter_op_parallelism_threads(2)
        except RuntimeError:  # Session already initialized
            pass
        tf.config.set_soft_device_placement(True)

    seed = config.get("seed")
    if seed is not None:
        np.random.seed(seed)
        tf.random.set_seed(seed)

    load_config(config)

    input_shape, output_shape = setup_data(config)

    search_space = get_search_space(config, input_shape, output_shape, seed=seed)

    model_created = False
    try:
        model = search_space.sample(config["arch_seq"])
        model_created = True
    except:
        logger.info("Error: Model creation failed...")
        logger.info(traceback.format_exc())

    if model_created:

        # Setup callbacks
        callbacks = []
        cb_requires_valid = False  # Callbacks requires validation data
        callbacks_config = config["hyperparameters"].get("callbacks")
        if callbacks_config is not None:
            for cb_name, cb_conf in callbacks_config.items():
                if cb_name in default_callbacks_config:
                    default_callbacks_config[cb_name].update(cb_conf)

                    # Special dynamic parameters for callbacks
                    if cb_name == "ModelCheckpoint":
                        default_callbacks_config[cb_name]["filepath"] = saver.model_path

                    # replace patience hyperparameter
                    if "patience" in default_callbacks_config[cb_name]:
                        patience = config["hyperparameters"].get(f"patience_{cb_name}")
                        if patience is not None:
                            default_callbacks_config[cb_name]["patience"] = patience

                    # Import and create corresponding callback
                    Callback = import_callback(cb_name)
                    callbacks.append(Callback(**default_callbacks_config[cb_name]))

                    if cb_name in ["EarlyStopping"]:
                        cb_requires_valid = "val" in cb_conf["monitor"].split("_")
                else:
                    logger.error(f"'{cb_name}' is not an accepted callback!")

        trainer = BaseTrainer(config=config, model=model)
        trainer.callbacks.extend(callbacks)

        last_only, with_pred = preproc_trainer(config)
        last_only = last_only and not cb_requires_valid

        history = trainer.train(with_pred=with_pred, last_only=last_only)

        # save history
        saver.write_history(history)

        result = compute_objective(config["objective"], history)
    else:
        # penalising actions if model cannot be created
        logger.info("Model could not be created returning -Inf!")
        result = -float("inf")

    if np.isnan(result):
        logger.info("Computed objective is NaN returning -Inf instead!")
        result = -float("inf")

    return result