Esempio n. 1
0
def evaluate_multianimal_full(
    config,
    Shuffles=[1],
    trainingsetindex=0,
    plotting=None,
    show_errors=True,
    comparisonbodyparts="all",
    gputouse=None,
    modelprefix="",
    c_engine=False,
):
    """
    WIP multi animal project.
    """

    import os

    from deeplabcut.pose_estimation_tensorflow.nnet import predict
    from deeplabcut.pose_estimation_tensorflow.nnet import (
        predict_multianimal as predictma, )
    from deeplabcut.utils import auxiliaryfunctions, auxfun_multianimal

    import tensorflow as tf

    if "TF_CUDNN_USE_AUTOTUNE" in os.environ:
        del os.environ[
            "TF_CUDNN_USE_AUTOTUNE"]  # was potentially set during training

    tf.reset_default_graph()
    os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2"  #
    if gputouse is not None:  # gpu selectinon
        os.environ["CUDA_VISIBLE_DEVICES"] = str(gputouse)

    start_path = os.getcwd()

    ##################################################
    # Load data...
    ##################################################
    cfg = auxiliaryfunctions.read_config(config)
    if trainingsetindex == "all":
        TrainingFractions = cfg["TrainingFraction"]
    else:
        TrainingFractions = [cfg["TrainingFraction"][trainingsetindex]]

    # Loading human annotatated data
    trainingsetfolder = auxiliaryfunctions.GetTrainingSetFolder(cfg)
    Data = pd.read_hdf(
        os.path.join(
            cfg["project_path"],
            str(trainingsetfolder),
            "CollectedData_" + cfg["scorer"] + ".h5",
        ),
        "df_with_missing",
    )
    # Get list of body parts to evaluate network for
    comparisonbodyparts = auxiliaryfunctions.IntersectionofBodyPartsandOnesGivenbyUser(
        cfg, comparisonbodyparts)
    colors = visualization.get_cmap(len(comparisonbodyparts),
                                    name=cfg["colormap"])
    # Make folder for evaluation
    auxiliaryfunctions.attempttomakefolder(
        str(cfg["project_path"] + "/evaluation-results/"))
    for shuffle in Shuffles:
        for trainFraction in TrainingFractions:
            ##################################################
            # Load and setup CNN part detector
            ##################################################
            datafn, metadatafn = auxiliaryfunctions.GetDataandMetaDataFilenames(
                trainingsetfolder, trainFraction, shuffle, cfg)
            modelfolder = os.path.join(
                cfg["project_path"],
                str(
                    auxiliaryfunctions.GetModelFolder(
                        trainFraction, shuffle, cfg, modelprefix=modelprefix)),
            )
            path_test_config = Path(modelfolder) / "test" / "pose_cfg.yaml"

            # Load meta data
            (
                data,
                trainIndices,
                testIndices,
                trainFraction,
            ) = auxiliaryfunctions.LoadMetadata(
                os.path.join(cfg["project_path"], metadatafn))

            try:
                dlc_cfg = load_config(str(path_test_config))
            except FileNotFoundError:
                raise FileNotFoundError(
                    "It seems the model for shuffle %s and trainFraction %s does not exist."
                    % (shuffle, trainFraction))

            # TODO: IMPLEMENT for different batch sizes?
            dlc_cfg["batch_size"] = 1  # due to differently sized images!!!

            # Create folder structure to store results.
            evaluationfolder = os.path.join(
                cfg["project_path"],
                str(
                    auxiliaryfunctions.GetEvaluationFolder(
                        trainFraction, shuffle, cfg, modelprefix=modelprefix)),
            )
            auxiliaryfunctions.attempttomakefolder(evaluationfolder,
                                                   recursive=True)
            # path_train_config = modelfolder / 'train' / 'pose_cfg.yaml'

            # Check which snapshots are available and sort them by # iterations
            Snapshots = np.array([
                fn.split(".")[0]
                for fn in os.listdir(os.path.join(str(modelfolder), "train"))
                if "index" in fn
            ])
            if len(Snapshots) == 0:
                print(
                    "Snapshots not found! It seems the dataset for shuffle %s and trainFraction %s is not trained.\nPlease train it before evaluating.\nUse the function 'train_network' to do so."
                    % (shuffle, trainFraction))
            else:
                increasing_indices = np.argsort(
                    [int(m.split("-")[1]) for m in Snapshots])
                Snapshots = Snapshots[increasing_indices]

                if cfg["snapshotindex"] == -1:
                    snapindices = [-1]
                elif cfg["snapshotindex"] == "all":
                    snapindices = range(len(Snapshots))
                elif cfg["snapshotindex"] < len(Snapshots):
                    snapindices = [cfg["snapshotindex"]]
                else:
                    print(
                        "Invalid choice, only -1 (last), any integer up to last, or all (as string)!"
                    )

                (
                    individuals,
                    uniquebodyparts,
                    multianimalbodyparts,
                ) = auxfun_multianimal.extractindividualsandbodyparts(cfg)

                final_result = []
                ##################################################
                # Compute predictions over images
                ##################################################
                for snapindex in snapindices:
                    dlc_cfg["init_weights"] = os.path.join(
                        str(modelfolder), "train", Snapshots[snapindex]
                    )  # setting weights to corresponding snapshot.
                    trainingsiterations = (
                        dlc_cfg["init_weights"].split(os.sep)[-1]
                    ).split(
                        "-"
                    )[-1]  # read how many training siterations that corresponds to.

                    # name for deeplabcut net (based on its parameters)
                    DLCscorer, DLCscorerlegacy = auxiliaryfunctions.GetScorerName(
                        cfg,
                        shuffle,
                        trainFraction,
                        trainingsiterations,
                        modelprefix=modelprefix,
                    )
                    print(
                        "Running ",
                        DLCscorer,
                        " with # of trainingiterations:",
                        trainingsiterations,
                    )
                    (
                        notanalyzed,
                        resultsfilename,
                        DLCscorer,
                    ) = auxiliaryfunctions.CheckifNotEvaluated(
                        str(evaluationfolder),
                        DLCscorer,
                        DLCscorerlegacy,
                        Snapshots[snapindex],
                    )

                    if os.path.isfile(
                            resultsfilename.split(".h5")[0] + "_full.pickle"):
                        print("Model already evaluated.", resultsfilename)
                    else:
                        if plotting:
                            foldername = os.path.join(
                                str(evaluationfolder),
                                "LabeledImages_" + DLCscorer + "_" +
                                Snapshots[snapindex],
                            )
                            auxiliaryfunctions.attempttomakefolder(foldername)

                        # print(dlc_cfg)
                        # Specifying state of model (snapshot / training state)
                        sess, inputs, outputs = predict.setup_pose_prediction(
                            dlc_cfg)

                        PredicteData = {}
                        print("Analyzing data...")
                        for imageindex, imagename in tqdm(enumerate(
                                Data.index)):
                            image_path = os.path.join(cfg["project_path"],
                                                      imagename)
                            image = io.imread(image_path)
                            frame = img_as_ubyte(skimage.color.gray2rgb(image))

                            GT = Data.iloc[imageindex]

                            # Storing GT data as dictionary, so it can be used for calculating connection costs
                            groundtruthcoordinates = []
                            groundtruthidentity = []
                            for bptindex, bpt in enumerate(
                                    dlc_cfg["all_joints_names"]):
                                coords = np.zeros([len(individuals), 2
                                                   ]) * np.nan
                                identity = []
                                for prfxindex, prefix in enumerate(
                                        individuals):
                                    if bpt in uniquebodyparts and prefix == "single":
                                        coords[prfxindex, :] = np.array([
                                            GT[cfg["scorer"]][prefix][bpt]
                                            ["x"],
                                            GT[cfg["scorer"]][prefix][bpt]
                                            ["y"],
                                        ])
                                        identity.append(prefix)
                                    elif (bpt in multianimalbodyparts
                                          and prefix != "single"):
                                        coords[prfxindex, :] = np.array([
                                            GT[cfg["scorer"]][prefix][bpt]
                                            ["x"],
                                            GT[cfg["scorer"]][prefix][bpt]
                                            ["y"],
                                        ])
                                        identity.append(prefix)
                                    else:
                                        identity.append("nix")

                                groundtruthcoordinates.append(
                                    coords[np.isfinite(coords[:, 0]), :])
                                groundtruthidentity.append(
                                    np.array(identity)[np.isfinite(coords[:,
                                                                          0])])

                            PredicteData[imagename] = {}
                            PredicteData[imagename]["index"] = imageindex

                            pred = predictma.get_detectionswithcostsandGT(
                                frame,
                                groundtruthcoordinates,
                                dlc_cfg,
                                sess,
                                inputs,
                                outputs,
                                outall=False,
                                nms_radius=dlc_cfg.nmsradius,
                                det_min_score=dlc_cfg.minconfidence,
                                c_engine=c_engine,
                            )
                            PredicteData[imagename]["prediction"] = pred
                            PredicteData[imagename]["groundtruth"] = [
                                groundtruthidentity,
                                groundtruthcoordinates,
                                GT,
                            ]

                            if plotting:
                                coords_pred = pred["coordinates"][0]
                                probs_pred = pred["confidence"]
                                fig = visualization.make_multianimal_labeled_image(
                                    frame,
                                    groundtruthcoordinates,
                                    coords_pred,
                                    probs_pred,
                                    colors,
                                    cfg["dotsize"],
                                    cfg["alphavalue"],
                                    cfg["pcutoff"],
                                )

                                visualization.save_labeled_frame(
                                    fig,
                                    image_path,
                                    foldername,
                                    imageindex in trainIndices,
                                )

                        sess.close()  # closes the current tf session
                        PredicteData["metadata"] = {
                            "nms radius":
                            dlc_cfg.nmsradius,
                            "minimal confidence":
                            dlc_cfg.minconfidence,
                            "PAFgraph":
                            dlc_cfg.partaffinityfield_graph,
                            "all_joints":
                            [[i] for i in range(len(dlc_cfg.all_joints))],
                            "all_joints_names": [
                                dlc_cfg.all_joints_names[i]
                                for i in range(len(dlc_cfg.all_joints))
                            ],
                            "stride":
                            dlc_cfg.get("stride", 8),
                        }
                        print(
                            "Done and results stored for snapshot: ",
                            Snapshots[snapindex],
                        )

                        dictionary = {
                            "Scorer": DLCscorer,
                            "DLC-model-config file": dlc_cfg,
                            "trainIndices": trainIndices,
                            "testIndices": testIndices,
                            "trainFraction": trainFraction,
                        }
                        metadata = {"data": dictionary}
                        auxfun_multianimal.SaveFullMultiAnimalData(
                            PredicteData, metadata, resultsfilename)

                        tf.reset_default_graph()

    # returning to intial folder
    os.chdir(str(start_path))
Esempio n. 2
0
def evaluate_multianimal_crossvalidate(
    config,
    Shuffles=[1],
    trainingsetindex=0,
    pbounds=None,
    edgewisecondition=True,
    target="rpck_train",
    inferencecfg=None,
    init_points=20,
    n_iter=50,
    dcorr=10.0,
    leastbpts=1,
    printingintermediatevalues=True,
    modelprefix="",
    plotting=False,
):
    """
    Crossvalidate inference parameters on evaluation data; optimal parametrs will be stored in " inference_cfg.yaml".

    They will then be then used for inference (for analysis of videos). Performs Bayesian Optimization with https://github.com/fmfn/BayesianOptimization

    This is a crucial step. The most important variable (in inferencecfg) to cross-validate is minimalnumberofconnections. Pass
    a reasonable range to optimze (e.g. if you have 5 edges from 1 to 5. If you have 4 bpts and 11 connections from 3 to 9).

    config: string
        Full path of the config.yaml file as a string.

    shuffle: int, optional
        An integer specifying the shuffle index of the training dataset used for training the network. The default is 1.

    trainingsetindex: int, optional
        Integer specifying which TrainingsetFraction to use. By default the first (note that TrainingFraction is a list in config.yaml).

    pbounds: dictionary of variables with ranges to crossvalidate.
        By default: pbounds = {
                        'pafthreshold': (0.05, 0.7),
                        'detectionthresholdsquare': (0, 0.9),
                        'minimalnumberofconnections': (1, # connections in your skeleton),
                    }

    inferencecfg: dict, OPTIONAL
        For the variables that are *not* crossvalidated the parameters from inference_cfg.yaml are used, or
        you can overwrite them by passing a dictinary with your preferred parameters.

    edgewisecondition: bool, default True
        Estimates Euclidean distances for each skeleton edge and uses those distance for excluding possible connections.
        If false, uses only one distance for all bodyparts (which is obviously suboptimal).

    target: string, default='rpck_train'
        What metric to optimize. Options are pck/rpck/rmse on train/test set.

    init_points: int, optional (default=10)
        Number of random initial explorations. Probing random regions helps diversify the exploration space.
        Parameter from BayesianOptimization.

    n_iter: int, optional (default=20)
        Number of iterations of Bayesian optimization to perform.
        The larger it is, the higher the likelihood of finding a good extremum.
        Parameter from BayesianOptimization.

    dcorr: float,
        Distance thereshold for percent correct keypoints / relative percent correct keypoints (see paper).

    leastbpts: integer (should be a small number)
        If an animals has less or equal as many body parts in an image it will not be used
        for cross validation. Imagine e.g. if only a single bodypart is present, then
        if animals need a certain minimal number of bodyparts for assembly (minimalnumberofconnections),
        this might not be predictable.

    printingintermediatevalues: bool, default True
        If intermediate metrics RMSE/hits/.. per sample should be printed.


    Examples
    --------

    first run evalute:

    deeplabcut.evaluate_network(path_config_file,Shuffles=[shuffle],plotting=True)

    Then e.g. for finding inference parameters to minimize rmse on test set:

    deeplabcut.evaluate_multianimal_crossvalidate(path_config_file,Shuffles=[shuffle],target='rmse_test')
    """
    from deeplabcut.pose_estimation_tensorflow.lib import crossvalutils
    from deeplabcut.utils import auxfun_multianimal, auxiliaryfunctions
    from easydict import EasyDict as edict

    cfg = auxiliaryfunctions.read_config(config)
    trainFraction = cfg["TrainingFraction"][trainingsetindex]
    trainingsetfolder = auxiliaryfunctions.GetTrainingSetFolder(cfg)
    Data = pd.read_hdf(
        os.path.join(
            cfg["project_path"],
            str(trainingsetfolder),
            "CollectedData_" + cfg["scorer"] + ".h5",
        ),
        "df_with_missing",
    )
    comparisonbodyparts = auxiliaryfunctions.IntersectionofBodyPartsandOnesGivenbyUser(
        cfg, "all")
    colors = visualization.get_cmap(len(comparisonbodyparts),
                                    name=cfg["colormap"])

    # wild guesses for a wide range:
    maxconnections = len(cfg["skeleton"])
    minconnections = 1  # len(cfg['multianimalbodyparts'])-1

    _pbounds = {
        "pafthreshold": (0.05, 0.7),
        "detectionthresholdsquare": (
            0,
            0.9,
        ),  # TODO: set to minimum (from pose_cfg.yaml)
        "minimalnumberofconnections": (minconnections, maxconnections),
    }
    if pbounds is not None:
        _pbounds.update(pbounds)

    if "rpck" in target or "pck" in target:
        maximize = True

    if "rmse" in target:
        maximize = False  # i.e. minimize

    for shuffle in Shuffles:
        evaluationfolder = os.path.join(
            cfg["project_path"],
            str(
                auxiliaryfunctions.GetEvaluationFolder(
                    trainFraction, shuffle, cfg, modelprefix=modelprefix)),
        )
        auxiliaryfunctions.attempttomakefolder(evaluationfolder,
                                               recursive=True)

        datafn, metadatafn = auxiliaryfunctions.GetDataandMetaDataFilenames(
            trainingsetfolder, trainFraction, shuffle, cfg)
        _, trainIndices, testIndices, _ = auxiliaryfunctions.LoadMetadata(
            os.path.join(cfg["project_path"], metadatafn))
        modelfolder = os.path.join(
            cfg["project_path"],
            str(
                auxiliaryfunctions.GetModelFolder(trainFraction,
                                                  shuffle,
                                                  cfg,
                                                  modelprefix=modelprefix)),
        )
        path_test_config = Path(modelfolder) / "test" / "pose_cfg.yaml"
        try:
            dlc_cfg = load_config(str(path_test_config))
        except FileNotFoundError:
            raise FileNotFoundError(
                "It seems the model for shuffle %s and trainFraction %s does not exist."
                % (shuffle, trainFraction))

        # Check which snapshots are available and sort them by # iterations
        Snapshots = np.array([
            fn.split(".")[0]
            for fn in os.listdir(os.path.join(str(modelfolder), "train"))
            if "index" in fn
        ])
        snapindex = -1
        dlc_cfg["init_weights"] = os.path.join(
            str(modelfolder), "train",
            Snapshots[snapindex])  # setting weights to corresponding snapshot.
        trainingsiterations = (dlc_cfg["init_weights"].split(
            os.sep)[-1]).split("-")[
                -1]  # read how many training siterations that corresponds to.

        DLCscorer, _ = auxiliaryfunctions.GetScorerName(
            cfg,
            shuffle,
            trainFraction,
            trainingsiterations,
            modelprefix=modelprefix)

        path_inference_config = Path(
            modelfolder) / "test" / "inference_cfg.yaml"
        if inferencecfg is None:  # then load or initialize
            inferencecfg = auxfun_multianimal.read_inferencecfg(
                path_inference_config, cfg)
        else:
            inferencecfg = edict(inferencecfg)
            auxfun_multianimal.check_inferencecfg_sanity(cfg, inferencecfg)

        inferencecfg.topktoretain = np.inf
        inferencecfg, opt = crossvalutils.bayesian_search(
            config,
            inferencecfg,
            _pbounds,
            edgewisecondition=edgewisecondition,
            shuffle=shuffle,
            trainingsetindex=trainingsetindex,
            target=target,
            maximize=maximize,
            init_points=init_points,
            n_iter=n_iter,
            acq="ei",
            dcorr=dcorr,
            leastbpts=leastbpts,
            modelprefix=modelprefix,
        )

        # update number of individuals to retain.
        inferencecfg.topktoretain = len(
            cfg["individuals"]) + 1 * (len(cfg["uniquebodyparts"]) > 0)

        # calculating result at best best solution
        DataOptParams, poses_gt, poses = crossvalutils.compute_crossval_metrics(
            config, inferencecfg, shuffle, trainingsetindex, modelprefix)

        path_inference_config = str(path_inference_config)
        # print("Quantification:", DataOptParams.head())
        DataOptParams.to_hdf(
            path_inference_config.split(".yaml")[0] + ".h5",
            "df_with_missing",
            format="table",
            mode="w",
        )
        DataOptParams.to_csv(path_inference_config.split(".yaml")[0] + ".csv")
        print("Saving optimal inference parameters...")
        print(DataOptParams.to_string())
        auxiliaryfunctions.write_plainconfig(path_inference_config,
                                             dict(inferencecfg))

        # Store best predictions
        max_indivs = max(pose.shape[0] for pose in poses)
        bpts = dlc_cfg["all_joints_names"]
        container = np.full((len(poses), max_indivs * len(bpts) * 3), np.nan)
        for n, pose in enumerate(poses):
            temp = pose.flatten()
            container[n, :len(temp)] = temp

        header = pd.MultiIndex.from_product(
            [
                [DLCscorer],
                [f"individual{i}" for i in range(1, max_indivs + 1)],
                bpts,
                ["x", "y", "likelihood"],
            ],
            names=["scorer", "individuals", "bodyparts", "coords"],
        )

        df = pd.DataFrame(container, columns=header)
        df.to_hdf(os.path.join(evaluationfolder, f"{DLCscorer}.h5"),
                  key="df_with_missing")

        if plotting:
            foldername = os.path.join(
                str(evaluationfolder),
                "LabeledImages_" + DLCscorer + "_" + Snapshots[snapindex],
            )
            auxiliaryfunctions.attempttomakefolder(foldername)
            for imageindex, imagename in tqdm(enumerate(Data.index)):
                image_path = os.path.join(cfg["project_path"], imagename)
                image = io.imread(image_path)
                frame = img_as_ubyte(skimage.color.gray2rgb(image))
                groundtruthcoordinates = poses_gt[imageindex]
                coords_pred = poses[imageindex][:, :, :2]
                probs_pred = poses[imageindex][:, :, -1:]
                fig = visualization.make_multianimal_labeled_image(
                    frame,
                    groundtruthcoordinates,
                    coords_pred,
                    probs_pred,
                    colors,
                    cfg["dotsize"],
                    cfg["alphavalue"],
                    cfg["pcutoff"],
                )
                visualization.save_labeled_frame(fig, image_path, foldername,
                                                 imageindex in trainIndices)
Esempio n. 3
0
def evaluate_network(
    config,
    Shuffles=[1],
    trainingsetindex=0,
    plotting=False,
    show_errors=True,
    comparisonbodyparts="all",
    gputouse=None,
    rescale=False,
    modelprefix="",
):
    """

    Evaluates the network based on the saved models at different stages of the training network.\n
    The evaluation results are stored in the .h5 and .csv file under the subdirectory 'evaluation_results'.
    Change the snapshotindex parameter in the config file to 'all' in order to evaluate all the saved models.
    Parameters
    ----------
    config : string
        Full path of the config.yaml file as a string.

    Shuffles: list, optional
        List of integers specifying the shuffle indices of the training dataset. The default is [1]

    trainingsetindex: int, optional
        Integer specifying which TrainingsetFraction to use. By default the first (note that TrainingFraction is a list in config.yaml). This
        variable can also be set to "all".

    plotting: bool or str, optional
        Plots the predictions on the train and test images.
        The default is ``False``; if provided it must be either ``True``, ``False``, "bodypart", or "individual".
        Setting to ``True`` defaults as "bodypart" for multi-animal projects.

    show_errors: bool, optional
        Display train and test errors. The default is `True``

    comparisonbodyparts: list of bodyparts, Default is "all".
        The average error will be computed for those body parts only (Has to be a subset of the body parts).

    gputouse: int, optional. Natural number indicating the number of your GPU (see number in nvidia-smi). If you do not have a GPU put None.
        See: https://nvidia.custhelp.com/app/answers/detail/a_id/3751/~/useful-nvidia-smi-queries

    rescale: bool, default False
        Evaluate the model at the 'global_scale' variable (as set in the test/pose_config.yaml file for a particular project). I.e. every
        image will be resized according to that scale and prediction will be compared to the resized ground truth. The error will be reported
        in pixels at rescaled to the *original* size. I.e. For a [200,200] pixel image evaluated at global_scale=.5, the predictions are calculated
        on [100,100] pixel images, compared to 1/2*ground truth and this error is then multiplied by 2!. The evaluation images are also shown for the
        original size!

    Examples
    --------
    If you do not want to plot, just evaluate shuffle 1.
    >>> deeplabcut.evaluate_network('/analysis/project/reaching-task/config.yaml', Shuffles=[1])
    --------
    If you want to plot and evaluate shuffle 0 and 1.
    >>> deeplabcut.evaluate_network('/analysis/project/reaching-task/config.yaml',Shuffles=[0, 1],plotting = True)

    --------
    If you want to plot assemblies for a maDLC project:
    >>> deeplabcut.evaluate_network('/analysis/project/reaching-task/config.yaml',Shuffles=[1],plotting = "individual")

    Note: this defaults to standard plotting for single-animal projects.

    """
    if plotting not in (True, False, "bodypart", "individual"):
        raise ValueError(f"Unknown value for `plotting`={plotting}")

    import os

    start_path = os.getcwd()
    from deeplabcut.utils import auxiliaryfunctions

    cfg = auxiliaryfunctions.read_config(config)

    if cfg.get("multianimalproject", False):
        from .evaluate_multianimal import evaluate_multianimal_full

        # TODO: Make this code not so redundant!
        evaluate_multianimal_full(
            config=config,
            Shuffles=Shuffles,
            trainingsetindex=trainingsetindex,
            plotting=plotting,
            comparisonbodyparts=comparisonbodyparts,
            gputouse=gputouse,
            modelprefix=modelprefix,
        )
    else:
        from deeplabcut.utils.auxfun_videos import imread, imresize
        from deeplabcut.pose_estimation_tensorflow.core import predict
        from deeplabcut.pose_estimation_tensorflow.config import load_config
        from deeplabcut.pose_estimation_tensorflow.datasets.utils import data_to_input
        from deeplabcut.utils import auxiliaryfunctions, conversioncode
        import tensorflow as tf

        # If a string was passed in, auto-convert to True for backward compatibility
        plotting = bool(plotting)

        if "TF_CUDNN_USE_AUTOTUNE" in os.environ:
            del os.environ[
                "TF_CUDNN_USE_AUTOTUNE"]  # was potentially set during training

        tf.compat.v1.reset_default_graph()
        os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2"  #
        #    tf.logging.set_verbosity(tf.logging.WARN)

        start_path = os.getcwd()
        # Read file path for pose_config file. >> pass it on
        cfg = auxiliaryfunctions.read_config(config)
        if gputouse is not None:  # gpu selectinon
            os.environ["CUDA_VISIBLE_DEVICES"] = str(gputouse)

        if trainingsetindex == "all":
            TrainingFractions = cfg["TrainingFraction"]
        else:
            if (trainingsetindex < len(cfg["TrainingFraction"])
                    and trainingsetindex >= 0):
                TrainingFractions = [
                    cfg["TrainingFraction"][int(trainingsetindex)]
                ]
            else:
                raise Exception(
                    "Please check the trainingsetindex! ",
                    trainingsetindex,
                    " should be an integer from 0 .. ",
                    int(len(cfg["TrainingFraction"]) - 1),
                )

        # Loading human annotatated data
        trainingsetfolder = auxiliaryfunctions.GetTrainingSetFolder(cfg)
        Data = pd.read_hdf(
            os.path.join(
                cfg["project_path"],
                str(trainingsetfolder),
                "CollectedData_" + cfg["scorer"] + ".h5",
            ))

        # Get list of body parts to evaluate network for
        comparisonbodyparts = (
            auxiliaryfunctions.IntersectionofBodyPartsandOnesGivenbyUser(
                cfg, comparisonbodyparts))
        # Make folder for evaluation
        auxiliaryfunctions.attempttomakefolder(
            str(cfg["project_path"] + "/evaluation-results/"))
        for shuffle in Shuffles:
            for trainFraction in TrainingFractions:
                ##################################################
                # Load and setup CNN part detector
                ##################################################
                datafn, metadatafn = auxiliaryfunctions.GetDataandMetaDataFilenames(
                    trainingsetfolder, trainFraction, shuffle, cfg)
                modelfolder = os.path.join(
                    cfg["project_path"],
                    str(
                        auxiliaryfunctions.GetModelFolder(
                            trainFraction,
                            shuffle,
                            cfg,
                            modelprefix=modelprefix)),
                )

                path_test_config = Path(modelfolder) / "test" / "pose_cfg.yaml"
                # Load meta data
                (
                    data,
                    trainIndices,
                    testIndices,
                    trainFraction,
                ) = auxiliaryfunctions.LoadMetadata(
                    os.path.join(cfg["project_path"], metadatafn))

                try:
                    dlc_cfg = load_config(str(path_test_config))
                except FileNotFoundError:
                    raise FileNotFoundError(
                        "It seems the model for shuffle %s and trainFraction %s does not exist."
                        % (shuffle, trainFraction))

                # change batch size, if it was edited during analysis!
                dlc_cfg[
                    "batch_size"] = 1  # in case this was edited for analysis.

                # Create folder structure to store results.
                evaluationfolder = os.path.join(
                    cfg["project_path"],
                    str(
                        auxiliaryfunctions.GetEvaluationFolder(
                            trainFraction,
                            shuffle,
                            cfg,
                            modelprefix=modelprefix)),
                )
                auxiliaryfunctions.attempttomakefolder(evaluationfolder,
                                                       recursive=True)
                # path_train_config = modelfolder / 'train' / 'pose_cfg.yaml'

                # Check which snapshots are available and sort them by # iterations
                Snapshots = np.array([
                    fn.split(".")[0] for fn in os.listdir(
                        os.path.join(str(modelfolder), "train"))
                    if "index" in fn
                ])
                try:  # check if any where found?
                    Snapshots[0]
                except IndexError:
                    raise FileNotFoundError(
                        "Snapshots not found! It seems the dataset for shuffle %s and trainFraction %s is not trained.\nPlease train it before evaluating.\nUse the function 'train_network' to do so."
                        % (shuffle, trainFraction))

                increasing_indices = np.argsort(
                    [int(m.split("-")[1]) for m in Snapshots])
                Snapshots = Snapshots[increasing_indices]

                if cfg["snapshotindex"] == -1:
                    snapindices = [-1]
                elif cfg["snapshotindex"] == "all":
                    snapindices = range(len(Snapshots))
                elif cfg["snapshotindex"] < len(Snapshots):
                    snapindices = [cfg["snapshotindex"]]
                else:
                    raise ValueError(
                        "Invalid choice, only -1 (last), any integer up to last, or all (as string)!"
                    )

                final_result = []

                ########################### RESCALING (to global scale)
                if rescale:
                    scale = dlc_cfg["global_scale"]
                    Data = (pd.read_hdf(
                        os.path.join(
                            cfg["project_path"],
                            str(trainingsetfolder),
                            "CollectedData_" + cfg["scorer"] + ".h5",
                        )) * scale)
                else:
                    scale = 1

                conversioncode.guarantee_multiindex_rows(Data)
                ##################################################
                # Compute predictions over images
                ##################################################
                for snapindex in snapindices:
                    dlc_cfg["init_weights"] = os.path.join(
                        str(modelfolder), "train", Snapshots[snapindex]
                    )  # setting weights to corresponding snapshot.
                    trainingsiterations = (
                        dlc_cfg["init_weights"].split(os.sep)[-1]
                    ).split(
                        "-"
                    )[-1]  # read how many training siterations that corresponds to.

                    # Name for deeplabcut net (based on its parameters)
                    DLCscorer, DLCscorerlegacy = auxiliaryfunctions.GetScorerName(
                        cfg,
                        shuffle,
                        trainFraction,
                        trainingsiterations,
                        modelprefix=modelprefix,
                    )
                    print(
                        "Running ",
                        DLCscorer,
                        " with # of training iterations:",
                        trainingsiterations,
                    )
                    (
                        notanalyzed,
                        resultsfilename,
                        DLCscorer,
                    ) = auxiliaryfunctions.CheckifNotEvaluated(
                        str(evaluationfolder),
                        DLCscorer,
                        DLCscorerlegacy,
                        Snapshots[snapindex],
                    )
                    if notanalyzed:
                        # Specifying state of model (snapshot / training state)
                        sess, inputs, outputs = predict.setup_pose_prediction(
                            dlc_cfg)
                        Numimages = len(Data.index)
                        PredicteData = np.zeros(
                            (Numimages, 3 * len(dlc_cfg["all_joints_names"])))
                        print("Running evaluation ...")
                        for imageindex, imagename in tqdm(enumerate(
                                Data.index)):
                            image = imread(
                                os.path.join(cfg["project_path"], *imagename),
                                mode="skimage",
                            )
                            if scale != 1:
                                image = imresize(image, scale)

                            image_batch = data_to_input(image)
                            # Compute prediction with the CNN
                            outputs_np = sess.run(
                                outputs, feed_dict={inputs: image_batch})
                            scmap, locref = predict.extract_cnn_output(
                                outputs_np, dlc_cfg)

                            # Extract maximum scoring location from the heatmap, assume 1 person
                            pose = predict.argmax_pose_predict(
                                scmap, locref, dlc_cfg["stride"])
                            PredicteData[imageindex, :] = (
                                pose.flatten()
                            )  # NOTE: thereby     cfg_test['all_joints_names'] should be same order as bodyparts!

                        sess.close()  # closes the current tf session

                        index = pd.MultiIndex.from_product(
                            [
                                [DLCscorer],
                                dlc_cfg["all_joints_names"],
                                ["x", "y", "likelihood"],
                            ],
                            names=["scorer", "bodyparts", "coords"],
                        )

                        # Saving results
                        DataMachine = pd.DataFrame(PredicteData,
                                                   columns=index,
                                                   index=Data.index)
                        DataMachine.to_hdf(resultsfilename, "df_with_missing")

                        print(
                            "Analysis is done and the results are stored (see evaluation-results) for snapshot: ",
                            Snapshots[snapindex],
                        )
                        DataCombined = pd.concat([Data.T, DataMachine.T],
                                                 axis=0,
                                                 sort=False).T

                        RMSE, RMSEpcutoff = pairwisedistances(
                            DataCombined,
                            cfg["scorer"],
                            DLCscorer,
                            cfg["pcutoff"],
                            comparisonbodyparts,
                        )
                        testerror = np.nanmean(
                            RMSE.iloc[testIndices].values.flatten())
                        trainerror = np.nanmean(
                            RMSE.iloc[trainIndices].values.flatten())
                        testerrorpcutoff = np.nanmean(
                            RMSEpcutoff.iloc[testIndices].values.flatten())
                        trainerrorpcutoff = np.nanmean(
                            RMSEpcutoff.iloc[trainIndices].values.flatten())
                        results = [
                            trainingsiterations,
                            int(100 * trainFraction),
                            shuffle,
                            np.round(trainerror, 2),
                            np.round(testerror, 2),
                            cfg["pcutoff"],
                            np.round(trainerrorpcutoff, 2),
                            np.round(testerrorpcutoff, 2),
                        ]
                        final_result.append(results)

                        if show_errors:
                            print(
                                "Results for",
                                trainingsiterations,
                                " training iterations:",
                                int(100 * trainFraction),
                                shuffle,
                                "train error:",
                                np.round(trainerror, 2),
                                "pixels. Test error:",
                                np.round(testerror, 2),
                                " pixels.",
                            )
                            print(
                                "With pcutoff of",
                                cfg["pcutoff"],
                                " train error:",
                                np.round(trainerrorpcutoff, 2),
                                "pixels. Test error:",
                                np.round(testerrorpcutoff, 2),
                                "pixels",
                            )
                            if scale != 1:
                                print(
                                    "The predictions have been calculated for rescaled images (and rescaled ground truth). Scale:",
                                    scale,
                                )
                            print(
                                "Thereby, the errors are given by the average distances between the labels by DLC and the scorer."
                            )

                        if plotting:
                            print("Plotting...")
                            foldername = os.path.join(
                                str(evaluationfolder),
                                "LabeledImages_" + DLCscorer + "_" +
                                Snapshots[snapindex],
                            )
                            auxiliaryfunctions.attempttomakefolder(foldername)
                            Plotting(
                                cfg,
                                comparisonbodyparts,
                                DLCscorer,
                                trainIndices,
                                DataCombined * 1.0 / scale,
                                foldername,
                            )  # Rescaling coordinates to have figure in original size!

                        tf.compat.v1.reset_default_graph()
                        # print(final_result)
                    else:
                        DataMachine = pd.read_hdf(resultsfilename)
                        conversioncode.guarantee_multiindex_rows(DataMachine)
                        if plotting:
                            DataCombined = pd.concat([Data.T, DataMachine.T],
                                                     axis=0,
                                                     sort=False).T
                            print(
                                "Plotting...(attention scale might be inconsistent in comparison to when data was analyzed; i.e. if you used rescale)"
                            )
                            foldername = os.path.join(
                                str(evaluationfolder),
                                "LabeledImages_" + DLCscorer + "_" +
                                Snapshots[snapindex],
                            )
                            auxiliaryfunctions.attempttomakefolder(foldername)
                            Plotting(
                                cfg,
                                comparisonbodyparts,
                                DLCscorer,
                                trainIndices,
                                DataCombined * 1.0 / scale,
                                foldername,
                            )

                if len(final_result
                       ) > 0:  # Only append if results were calculated
                    make_results_file(final_result, evaluationfolder,
                                      DLCscorer)
                    print(
                        "The network is evaluated and the results are stored in the subdirectory 'evaluation_results'."
                    )
                    print(
                        "Please check the results, then choose the best model (snapshot) for prediction. You can update the config.yaml file with the appropriate index for the 'snapshotindex'.\nUse the function 'analyze_video' to make predictions on new videos."
                    )
                    print(
                        "Otherwise, consider adding more labeled-data and retraining the network (see DeepLabCut workflow Fig 2, Nath 2019)"
                    )

    # returning to initial folder
    os.chdir(str(start_path))
def evaluate_multianimal_full(
    config,
    Shuffles=[1],
    trainingsetindex=0,
    plotting=False,
    show_errors=True,
    comparisonbodyparts="all",
    gputouse=None,
    modelprefix="",
):
    from deeplabcut.pose_estimation_tensorflow.core import (
        predict,
        predict_multianimal as predictma,
    )
    from deeplabcut.utils import (
        auxiliaryfunctions,
        auxfun_multianimal,
        auxfun_videos,
        conversioncode,
    )

    import tensorflow as tf

    if "TF_CUDNN_USE_AUTOTUNE" in os.environ:
        del os.environ["TF_CUDNN_USE_AUTOTUNE"]  # was potentially set during training

    tf.compat.v1.reset_default_graph()
    os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2"  #
    if gputouse is not None:  # gpu selectinon
        os.environ["CUDA_VISIBLE_DEVICES"] = str(gputouse)

    start_path = os.getcwd()

    if plotting is True:
        plotting = "bodypart"

    ##################################################
    # Load data...
    ##################################################
    cfg = auxiliaryfunctions.read_config(config)
    if trainingsetindex == "all":
        TrainingFractions = cfg["TrainingFraction"]
    else:
        TrainingFractions = [cfg["TrainingFraction"][trainingsetindex]]

    # Loading human annotatated data
    trainingsetfolder = auxiliaryfunctions.GetTrainingSetFolder(cfg)
    Data = pd.read_hdf(
        os.path.join(
            cfg["project_path"],
            str(trainingsetfolder),
            "CollectedData_" + cfg["scorer"] + ".h5",
        )
    )
    conversioncode.guarantee_multiindex_rows(Data)

    # Get list of body parts to evaluate network for
    comparisonbodyparts = auxiliaryfunctions.IntersectionofBodyPartsandOnesGivenbyUser(
        cfg, comparisonbodyparts
    )
    all_bpts = np.asarray(
        len(cfg["individuals"]) * cfg["multianimalbodyparts"] + cfg["uniquebodyparts"]
    )
    colors = visualization.get_cmap(len(comparisonbodyparts), name=cfg["colormap"])
    # Make folder for evaluation
    auxiliaryfunctions.attempttomakefolder(
        str(cfg["project_path"] + "/evaluation-results/")
    )
    for shuffle in Shuffles:
        for trainFraction in TrainingFractions:
            ##################################################
            # Load and setup CNN part detector
            ##################################################
            datafn, metadatafn = auxiliaryfunctions.GetDataandMetaDataFilenames(
                trainingsetfolder, trainFraction, shuffle, cfg
            )
            modelfolder = os.path.join(
                cfg["project_path"],
                str(
                    auxiliaryfunctions.GetModelFolder(
                        trainFraction, shuffle, cfg, modelprefix=modelprefix
                    )
                ),
            )
            path_test_config = Path(modelfolder) / "test" / "pose_cfg.yaml"

            # Load meta data
            (
                data,
                trainIndices,
                testIndices,
                trainFraction,
            ) = auxiliaryfunctions.LoadMetadata(
                os.path.join(cfg["project_path"], metadatafn)
            )

            try:
                dlc_cfg = load_config(str(path_test_config))
            except FileNotFoundError:
                raise FileNotFoundError(
                    "It seems the model for shuffle %s and trainFraction %s does not exist."
                    % (shuffle, trainFraction)
                )

            pipeline = iaa.Sequential(random_order=False)
            pre_resize = dlc_cfg.get("pre_resize")
            if pre_resize:
                width, height = pre_resize
                pipeline.add(iaa.Resize({"height": height, "width": width}))

            # TODO: IMPLEMENT for different batch sizes?
            dlc_cfg["batch_size"] = 1  # due to differently sized images!!!

            stride = dlc_cfg["stride"]
            # Ignore best edges possibly defined during a prior evaluation
            _ = dlc_cfg.pop("paf_best", None)
            joints = dlc_cfg["all_joints_names"]

            # Create folder structure to store results.
            evaluationfolder = os.path.join(
                cfg["project_path"],
                str(
                    auxiliaryfunctions.GetEvaluationFolder(
                        trainFraction, shuffle, cfg, modelprefix=modelprefix
                    )
                ),
            )
            auxiliaryfunctions.attempttomakefolder(evaluationfolder, recursive=True)
            # path_train_config = modelfolder / 'train' / 'pose_cfg.yaml'

            # Check which snapshots are available and sort them by # iterations
            Snapshots = np.array(
                [
                    fn.split(".")[0]
                    for fn in os.listdir(os.path.join(str(modelfolder), "train"))
                    if "index" in fn
                ]
            )
            if len(Snapshots) == 0:
                print(
                    "Snapshots not found! It seems the dataset for shuffle %s and trainFraction %s is not trained.\nPlease train it before evaluating.\nUse the function 'train_network' to do so."
                    % (shuffle, trainFraction)
                )
            else:
                increasing_indices = np.argsort(
                    [int(m.split("-")[1]) for m in Snapshots]
                )
                Snapshots = Snapshots[increasing_indices]

                if cfg["snapshotindex"] == -1:
                    snapindices = [-1]
                elif cfg["snapshotindex"] == "all":
                    snapindices = range(len(Snapshots))
                elif cfg["snapshotindex"] < len(Snapshots):
                    snapindices = [cfg["snapshotindex"]]
                else:
                    print(
                        "Invalid choice, only -1 (last), any integer up to last, or all (as string)!"
                    )

                final_result = []
                ##################################################
                # Compute predictions over images
                ##################################################
                for snapindex in snapindices:
                    dlc_cfg["init_weights"] = os.path.join(
                        str(modelfolder), "train", Snapshots[snapindex]
                    )  # setting weights to corresponding snapshot.
                    trainingsiterations = (
                        dlc_cfg["init_weights"].split(os.sep)[-1]
                    ).split("-")[
                        -1
                    ]  # read how many training siterations that corresponds to.

                    # name for deeplabcut net (based on its parameters)
                    DLCscorer, DLCscorerlegacy = auxiliaryfunctions.GetScorerName(
                        cfg,
                        shuffle,
                        trainFraction,
                        trainingsiterations,
                        modelprefix=modelprefix,
                    )
                    print(
                        "Running ",
                        DLCscorer,
                        " with # of trainingiterations:",
                        trainingsiterations,
                    )
                    (
                        notanalyzed,
                        resultsfilename,
                        DLCscorer,
                    ) = auxiliaryfunctions.CheckifNotEvaluated(
                        str(evaluationfolder),
                        DLCscorer,
                        DLCscorerlegacy,
                        Snapshots[snapindex],
                    )

                    data_path = resultsfilename.split(".h5")[0] + "_full.pickle"

                    if plotting:
                        foldername = os.path.join(
                            str(evaluationfolder),
                            "LabeledImages_" + DLCscorer + "_" + Snapshots[snapindex],
                        )
                        auxiliaryfunctions.attempttomakefolder(foldername)
                        if plotting == "bodypart":
                            fig, ax = visualization.create_minimal_figure()

                    if os.path.isfile(data_path):
                        print("Model already evaluated.", resultsfilename)
                    else:

                        (sess, inputs, outputs,) = predict.setup_pose_prediction(
                            dlc_cfg
                        )

                        PredicteData = {}
                        dist = np.full((len(Data), len(all_bpts)), np.nan)
                        conf = np.full_like(dist, np.nan)
                        print("Network Evaluation underway...")
                        for imageindex, imagename in tqdm(enumerate(Data.index)):
                            image_path = os.path.join(cfg["project_path"], *imagename)
                            frame = auxfun_videos.imread(image_path, mode="skimage")

                            GT = Data.iloc[imageindex]
                            if not GT.any():
                                continue

                            # Pass the image and the keypoints through the resizer;
                            # this has no effect if no augmenters were added to it.
                            keypoints = [GT.to_numpy().reshape((-1, 2)).astype(float)]
                            frame_, keypoints = pipeline(
                                images=[frame], keypoints=keypoints
                            )
                            frame = frame_[0]
                            GT[:] = keypoints[0].flatten()

                            df = GT.unstack("coords").reindex(joints, level="bodyparts")

                            # FIXME Is having an empty array vs nan really that necessary?!
                            groundtruthidentity = list(
                                df.index.get_level_values("individuals")
                                .to_numpy()
                                .reshape((-1, 1))
                            )
                            groundtruthcoordinates = list(df.values[:, np.newaxis])
                            for i, coords in enumerate(groundtruthcoordinates):
                                if np.isnan(coords).any():
                                    groundtruthcoordinates[i] = np.empty(
                                        (0, 2), dtype=float
                                    )
                                    groundtruthidentity[i] = np.array([], dtype=str)

                            # Form 2D array of shape (n_rows, 4) where the last dimension
                            # is (sample_index, peak_y, peak_x, bpt_index) to slice the PAFs.
                            temp = df.reset_index(level="bodyparts").dropna()
                            temp["bodyparts"].replace(
                                dict(zip(joints, range(len(joints)))), inplace=True,
                            )
                            temp["sample"] = 0
                            peaks_gt = temp.loc[
                                :, ["sample", "y", "x", "bodyparts"]
                            ].to_numpy()
                            peaks_gt[:, 1:3] = (peaks_gt[:, 1:3] - stride // 2) / stride

                            pred = predictma.predict_batched_peaks_and_costs(
                                dlc_cfg,
                                np.expand_dims(frame, axis=0),
                                sess,
                                inputs,
                                outputs,
                                peaks_gt.astype(int),
                            )

                            if not pred:
                                continue
                            else:
                                pred = pred[0]

                            PredicteData[imagename] = {}
                            PredicteData[imagename]["index"] = imageindex
                            PredicteData[imagename]["prediction"] = pred
                            PredicteData[imagename]["groundtruth"] = [
                                groundtruthidentity,
                                groundtruthcoordinates,
                                GT,
                            ]

                            coords_pred = pred["coordinates"][0]
                            probs_pred = pred["confidence"]
                            for bpt, xy_gt in df.groupby(level="bodyparts"):
                                inds_gt = np.flatnonzero(
                                    np.all(~np.isnan(xy_gt), axis=1)
                                )
                                n_joint = joints.index(bpt)
                                xy = coords_pred[n_joint]
                                if inds_gt.size and xy.size:
                                    # Pick the predictions closest to ground truth,
                                    # rather than the ones the model has most confident in
                                    xy_gt_values = xy_gt.iloc[inds_gt].values
                                    neighbors = _find_closest_neighbors(
                                        xy_gt_values, xy, k=3
                                    )
                                    found = neighbors != -1
                                    min_dists = np.linalg.norm(
                                        xy_gt_values[found] - xy[neighbors[found]],
                                        axis=1,
                                    )
                                    inds = np.flatnonzero(all_bpts == bpt)
                                    sl = imageindex, inds[inds_gt[found]]
                                    dist[sl] = min_dists
                                    conf[sl] = probs_pred[n_joint][
                                        neighbors[found]
                                    ].squeeze()

                            if plotting == "bodypart":
                                temp_xy = GT.unstack("bodyparts")[joints].values
                                gt = temp_xy.reshape(
                                    (-1, 2, temp_xy.shape[1])
                                ).T.swapaxes(1, 2)
                                h, w, _ = np.shape(frame)
                                fig.set_size_inches(w / 100, h / 100)
                                ax.set_xlim(0, w)
                                ax.set_ylim(0, h)
                                ax.invert_yaxis()
                                ax = visualization.make_multianimal_labeled_image(
                                    frame,
                                    gt,
                                    coords_pred,
                                    probs_pred,
                                    colors,
                                    cfg["dotsize"],
                                    cfg["alphavalue"],
                                    cfg["pcutoff"],
                                    ax=ax,
                                )
                                visualization.save_labeled_frame(
                                    fig,
                                    image_path,
                                    foldername,
                                    imageindex in trainIndices,
                                )
                                visualization.erase_artists(ax)

                        sess.close()  # closes the current tf session

                        # Compute all distance statistics
                        df_dist = pd.DataFrame(dist, columns=df.index)
                        df_conf = pd.DataFrame(conf, columns=df.index)
                        df_joint = pd.concat(
                            [df_dist, df_conf],
                            keys=["rmse", "conf"],
                            names=["metrics"],
                            axis=1,
                        )
                        df_joint = df_joint.reorder_levels(
                            list(np.roll(df_joint.columns.names, -1)), axis=1
                        )
                        df_joint.sort_index(
                            axis=1,
                            level=["individuals", "bodyparts"],
                            ascending=[True, True],
                            inplace=True,
                        )
                        write_path = os.path.join(
                            evaluationfolder, f"dist_{trainingsiterations}.csv"
                        )
                        df_joint.to_csv(write_path)

                        # Calculate overall prediction error
                        error = df_joint.xs("rmse", level="metrics", axis=1)
                        mask = (
                            df_joint.xs("conf", level="metrics", axis=1)
                            >= cfg["pcutoff"]
                        )
                        error_masked = error[mask]
                        error_train = np.nanmean(error.iloc[trainIndices])
                        error_train_cut = np.nanmean(error_masked.iloc[trainIndices])
                        error_test = np.nanmean(error.iloc[testIndices])
                        error_test_cut = np.nanmean(error_masked.iloc[testIndices])
                        results = [
                            trainingsiterations,
                            int(100 * trainFraction),
                            shuffle,
                            np.round(error_train, 2),
                            np.round(error_test, 2),
                            cfg["pcutoff"],
                            np.round(error_train_cut, 2),
                            np.round(error_test_cut, 2),
                        ]
                        final_result.append(results)

                        if show_errors:
                            string = (
                                "Results for {} training iterations, training fraction of {}, and shuffle {}:\n"
                                "Train error: {} pixels. Test error: {} pixels.\n"
                                "With pcutoff of {}:\n"
                                "Train error: {} pixels. Test error: {} pixels."
                            )
                            print(string.format(*results))

                            print("##########################################")
                            print(
                                "Average Euclidean distance to GT per individual (in pixels; test-only)"
                            )
                            print(
                                error_masked.iloc[testIndices]
                                .groupby("individuals", axis=1)
                                .mean()
                                .mean()
                                .to_string()
                            )
                            print(
                                "Average Euclidean distance to GT per bodypart (in pixels; test-only)"
                            )
                            print(
                                error_masked.iloc[testIndices]
                                .groupby("bodyparts", axis=1)
                                .mean()
                                .mean()
                                .to_string()
                            )

                        PredicteData["metadata"] = {
                            "nms radius": dlc_cfg["nmsradius"],
                            "minimal confidence": dlc_cfg["minconfidence"],
                            "sigma": dlc_cfg.get("sigma", 1),
                            "PAFgraph": dlc_cfg["partaffinityfield_graph"],
                            "PAFinds": np.arange(
                                len(dlc_cfg["partaffinityfield_graph"])
                            ),
                            "all_joints": [
                                [i] for i in range(len(dlc_cfg["all_joints"]))
                            ],
                            "all_joints_names": [
                                dlc_cfg["all_joints_names"][i]
                                for i in range(len(dlc_cfg["all_joints"]))
                            ],
                            "stride": dlc_cfg.get("stride", 8),
                        }
                        print(
                            "Done and results stored for snapshot: ",
                            Snapshots[snapindex],
                        )

                        dictionary = {
                            "Scorer": DLCscorer,
                            "DLC-model-config file": dlc_cfg,
                            "trainIndices": trainIndices,
                            "testIndices": testIndices,
                            "trainFraction": trainFraction,
                        }
                        metadata = {"data": dictionary}
                        _ = auxfun_multianimal.SaveFullMultiAnimalData(
                            PredicteData, metadata, resultsfilename
                        )

                        tf.compat.v1.reset_default_graph()

                    n_multibpts = len(cfg["multianimalbodyparts"])
                    if n_multibpts == 1:
                        continue

                    # Skip data-driven skeleton selection unless
                    # the model was trained on the full graph.
                    max_n_edges = n_multibpts * (n_multibpts - 1) // 2
                    n_edges = len(dlc_cfg["partaffinityfield_graph"])
                    if n_edges == max_n_edges:
                        print("Selecting best skeleton...")
                        n_graphs = 10
                        paf_inds = None
                    else:
                        n_graphs = 1
                        paf_inds = [list(range(n_edges))]
                    (
                        results,
                        paf_scores,
                        best_assemblies,
                    ) = crossvalutils.cross_validate_paf_graphs(
                        config,
                        str(path_test_config).replace("pose_", "inference_"),
                        data_path,
                        data_path.replace("_full.", "_meta."),
                        n_graphs=n_graphs,
                        paf_inds=paf_inds,
                        oks_sigma=dlc_cfg.get("oks_sigma", 0.1),
                        margin=dlc_cfg.get("bbox_margin", 0),
                        symmetric_kpts=dlc_cfg.get("symmetric_kpts"),
                    )
                    if plotting == "individual":
                        assemblies, assemblies_unique, image_paths = best_assemblies
                        fig, ax = visualization.create_minimal_figure()
                        n_animals = len(cfg["individuals"])
                        if cfg["uniquebodyparts"]:
                            n_animals += 1
                        colors = visualization.get_cmap(n_animals, name=cfg["colormap"])
                        for k, v in tqdm(assemblies.items()):
                            imname = image_paths[k]
                            image_path = os.path.join(cfg["project_path"], *imname)
                            frame = auxfun_videos.imread(image_path, mode="skimage")

                            h, w, _ = np.shape(frame)
                            fig.set_size_inches(w / 100, h / 100)
                            ax.set_xlim(0, w)
                            ax.set_ylim(0, h)
                            ax.invert_yaxis()

                            gt = [
                                s.to_numpy().reshape((-1, 2))
                                for _, s in Data.loc[imname].groupby("individuals")
                            ]
                            coords_pred = []
                            coords_pred += [ass.xy for ass in v]
                            probs_pred = []
                            probs_pred += [ass.data[:, 2:3] for ass in v]
                            if assemblies_unique is not None:
                                unique = assemblies_unique.get(k, None)
                                if unique is not None:
                                    coords_pred.append(unique[:, :2])
                                    probs_pred.append(unique[:, 2:3])
                            while len(coords_pred) < len(gt):
                                coords_pred.append(np.full((1, 2), np.nan))
                                probs_pred.append(np.full((1, 2), np.nan))
                            ax = visualization.make_multianimal_labeled_image(
                                frame,
                                gt,
                                coords_pred,
                                probs_pred,
                                colors,
                                cfg["dotsize"],
                                cfg["alphavalue"],
                                cfg["pcutoff"],
                                ax=ax,
                            )
                            visualization.save_labeled_frame(
                                fig, image_path, foldername, k in trainIndices,
                            )
                            visualization.erase_artists(ax)

                    df = results[1].copy()
                    df.loc(axis=0)[("mAP_train", "mean")] = [
                        d[0]["mAP"] for d in results[2]
                    ]
                    df.loc(axis=0)[("mAR_train", "mean")] = [
                        d[0]["mAR"] for d in results[2]
                    ]
                    df.loc(axis=0)[("mAP_test", "mean")] = [
                        d[1]["mAP"] for d in results[2]
                    ]
                    df.loc(axis=0)[("mAR_test", "mean")] = [
                        d[1]["mAR"] for d in results[2]
                    ]
                    with open(data_path.replace("_full.", "_map."), "wb") as file:
                        pickle.dump((df, paf_scores), file)

                if len(final_result) > 0:  # Only append if results were calculated
                    make_results_file(final_result, evaluationfolder, DLCscorer)

    os.chdir(str(start_path))
Esempio n. 5
0
def return_evaluate_network_data(
    config,
    shuffle=0,
    trainingsetindex=0,
    comparisonbodyparts="all",
    Snapindex=None,
    rescale=False,
    fulldata=False,
    show_errors=True,
    modelprefix="",
    returnjustfns=True,
):
    """
    Returns the results for (previously evaluated) network. deeplabcut.evaluate_network(..)
    Returns list of (per model): [trainingsiterations,trainfraction,shuffle,trainerror,testerror,pcutoff,trainerrorpcutoff,testerrorpcutoff,Snapshots[snapindex],scale,net_type]

    If fulldata=True, also returns (the complete annotation and prediction array)
    Returns list of: (DataMachine, Data, data, trainIndices, testIndices, trainFraction, DLCscorer,comparisonbodyparts, cfg, Snapshots[snapindex])
    ----------
    config : string
        Full path of the config.yaml file as a string.

    shuffle: integer
        integers specifying shuffle index of the training dataset. The default is 0.

    trainingsetindex: int, optional
        Integer specifying which TrainingsetFraction to use. By default the first (note that TrainingFraction is a list in config.yaml). This
        variable can also be set to "all".

    comparisonbodyparts: list of bodyparts, Default is "all".
        The average error will be computed for those body parts only (Has to be a subset of the body parts).

    rescale: bool, default False
        Evaluate the model at the 'global_scale' variable (as set in the test/pose_config.yaml file for a particular project). I.e. every
        image will be resized according to that scale and prediction will be compared to the resized ground truth. The error will be reported
        in pixels at rescaled to the *original* size. I.e. For a [200,200] pixel image evaluated at global_scale=.5, the predictions are calculated
        on [100,100] pixel images, compared to 1/2*ground truth and this error is then multiplied by 2!. The evaluation images are also shown for the
        original size!

    Examples
    --------
    If you do not want to plot
    >>> deeplabcut._evaluate_network_data('/analysis/project/reaching-task/config.yaml', shuffle=[1])
    --------
    If you want to plot
    >>> deeplabcut.evaluate_network('/analysis/project/reaching-task/config.yaml',shuffle=[1],True)
    """

    import os

    from deeplabcut.pose_estimation_tensorflow.config import load_config
    from deeplabcut.utils import auxiliaryfunctions

    start_path = os.getcwd()
    # Read file path for pose_config file. >> pass it on
    cfg = auxiliaryfunctions.read_config(config)

    # Loading human annotatated data
    trainingsetfolder = auxiliaryfunctions.GetTrainingSetFolder(cfg)
    # Data=pd.read_hdf(os.path.join(cfg["project_path"],str(trainingsetfolder),'CollectedData_' + cfg["scorer"] + '.h5'),'df_with_missing')

    # Get list of body parts to evaluate network for
    comparisonbodyparts = auxiliaryfunctions.IntersectionofBodyPartsandOnesGivenbyUser(
        cfg, comparisonbodyparts)
    ##################################################
    # Load data...
    ##################################################
    trainFraction = cfg["TrainingFraction"][trainingsetindex]
    datafn, metadatafn = auxiliaryfunctions.GetDataandMetaDataFilenames(
        trainingsetfolder, trainFraction, shuffle, cfg)
    modelfolder = os.path.join(
        cfg["project_path"],
        str(
            auxiliaryfunctions.GetModelFolder(trainFraction,
                                              shuffle,
                                              cfg,
                                              modelprefix=modelprefix)),
    )
    path_test_config = Path(modelfolder) / "test" / "pose_cfg.yaml"
    # Load meta data
    data, trainIndices, testIndices, trainFraction = auxiliaryfunctions.LoadMetadata(
        os.path.join(cfg["project_path"], metadatafn))

    try:
        dlc_cfg = load_config(str(path_test_config))
    except FileNotFoundError:
        raise FileNotFoundError(
            "It seems the model for shuffle %s and trainFraction %s does not exist."
            % (shuffle, trainFraction))

    ########################### RESCALING (to global scale)
    if rescale == True:
        scale = dlc_cfg["global_scale"]
        print("Rescaling Data to ", scale)
        Data = (pd.read_hdf(
            os.path.join(
                cfg["project_path"],
                str(trainingsetfolder),
                "CollectedData_" + cfg["scorer"] + ".h5",
            )) * scale)
    else:
        scale = 1
        Data = pd.read_hdf(
            os.path.join(
                cfg["project_path"],
                str(trainingsetfolder),
                "CollectedData_" + cfg["scorer"] + ".h5",
            ))

    evaluationfolder = os.path.join(
        cfg["project_path"],
        str(
            auxiliaryfunctions.GetEvaluationFolder(trainFraction,
                                                   shuffle,
                                                   cfg,
                                                   modelprefix=modelprefix)),
    )
    # Check which snapshots are available and sort them by # iterations
    Snapshots = np.array([
        fn.split(".")[0]
        for fn in os.listdir(os.path.join(str(modelfolder), "train"))
        if "index" in fn
    ])

    if len(Snapshots) == 0:
        print(
            "Snapshots not found! It seems the dataset for shuffle %s and trainFraction %s is not trained.\nPlease train it before evaluating.\nUse the function 'train_network' to do so."
            % (shuffle, trainFraction))
        snapindices = []
    else:
        increasing_indices = np.argsort(
            [int(m.split("-")[1]) for m in Snapshots])
        Snapshots = Snapshots[increasing_indices]
        if Snapindex == None:
            Snapindex = cfg["snapshotindex"]

        if Snapindex == -1:
            snapindices = [-1]
        elif Snapindex == "all":
            snapindices = range(len(Snapshots))
        elif Snapindex < len(Snapshots):
            snapindices = [Snapindex]
        else:
            print(
                "Invalid choice, only -1 (last), any integer up to last, or all (as string)!"
            )

    DATA = []
    results = []
    resultsfns = []
    for snapindex in snapindices:
        dlc_cfg["init_weights"] = os.path.join(
            str(modelfolder), "train",
            Snapshots[snapindex])  # setting weights to corresponding snapshot.
        trainingsiterations = (dlc_cfg["init_weights"].split(
            os.sep)[-1]).split("-")[
                -1]  # read how many training siterations that corresponds to.

        # name for deeplabcut net (based on its parameters)
        DLCscorer, DLCscorerlegacy = auxiliaryfunctions.GetScorerName(
            cfg,
            shuffle,
            trainFraction,
            trainingsiterations,
            modelprefix=modelprefix)
        if not returnjustfns:
            print(
                "Retrieving ",
                DLCscorer,
                " with # of trainingiterations:",
                trainingsiterations,
            )

        (
            notanalyzed,
            resultsfilename,
            DLCscorer,
        ) = auxiliaryfunctions.CheckifNotEvaluated(str(evaluationfolder),
                                                   DLCscorer, DLCscorerlegacy,
                                                   Snapshots[snapindex])
        # resultsfilename=os.path.join(str(evaluationfolder),DLCscorer + '-' + str(Snapshots[snapindex])+  '.h5') # + '-' + str(snapshot)+  ' #'-' + Snapshots[snapindex]+  '.h5')
        print(resultsfilename)
        resultsfns.append(resultsfilename)
        if not returnjustfns:
            if not notanalyzed and os.path.isfile(
                    resultsfilename):  # data exists..
                DataMachine = pd.read_hdf(resultsfilename)
                DataCombined = pd.concat([Data.T, DataMachine.T], axis=0).T
                RMSE, RMSEpcutoff = pairwisedistances(
                    DataCombined,
                    cfg["scorer"],
                    DLCscorer,
                    cfg["pcutoff"],
                    comparisonbodyparts,
                )

                testerror = np.nanmean(RMSE.iloc[testIndices].values.flatten())
                trainerror = np.nanmean(
                    RMSE.iloc[trainIndices].values.flatten())
                testerrorpcutoff = np.nanmean(
                    RMSEpcutoff.iloc[testIndices].values.flatten())
                trainerrorpcutoff = np.nanmean(
                    RMSEpcutoff.iloc[trainIndices].values.flatten())
                if show_errors == True:
                    print(
                        "Results for",
                        trainingsiterations,
                        " training iterations:",
                        int(100 * trainFraction),
                        shuffle,
                        "train error:",
                        np.round(trainerror, 2),
                        "pixels. Test error:",
                        np.round(testerror, 2),
                        " pixels.",
                    )
                    print(
                        "With pcutoff of",
                        cfg["pcutoff"],
                        " train error:",
                        np.round(trainerrorpcutoff, 2),
                        "pixels. Test error:",
                        np.round(testerrorpcutoff, 2),
                        "pixels",
                    )
                    print("Snapshot", Snapshots[snapindex])

                r = [
                    trainingsiterations,
                    int(100 * trainFraction),
                    shuffle,
                    np.round(trainerror, 2),
                    np.round(testerror, 2),
                    cfg["pcutoff"],
                    np.round(trainerrorpcutoff, 2),
                    np.round(testerrorpcutoff, 2),
                    Snapshots[snapindex],
                    scale,
                    dlc_cfg["net_type"],
                ]
                results.append(r)
            else:
                print("Model not trained/evaluated!")
            if fulldata == True:
                DATA.append([
                    DataMachine,
                    Data,
                    data,
                    trainIndices,
                    testIndices,
                    trainFraction,
                    DLCscorer,
                    comparisonbodyparts,
                    cfg,
                    evaluationfolder,
                    Snapshots[snapindex],
                ])

    os.chdir(start_path)
    if returnjustfns:
        return resultsfns
    else:
        if fulldata == True:
            return DATA, results
        else:
            return results
Esempio n. 6
0
def calculatepafdistancebounds(config,
                               shuffle=0,
                               trainingsetindex=0,
                               modelprefix="",
                               numdigits=0,
                               onlytrain=False):
    """
    Returns distances along paf edges in train/test data

    ----------
    config : string
        Full path of the config.yaml file as a string.

    shuffle: integer
        integers specifying shuffle index of the training dataset. The default is 0.

    trainingsetindex: int, optional
        Integer specifying which TrainingsetFraction to use. By default the first (note that TrainingFraction is a list in config.yaml). This
        variable can also be set to "all".

    numdigits: number of digits to round for distances.

    """
    import os
    from deeplabcut.utils import auxiliaryfunctions, auxfun_multianimal
    from deeplabcut.pose_estimation_tensorflow.config import load_config

    # Read file path for pose_config file. >> pass it on
    cfg = auxiliaryfunctions.read_config(config)

    if cfg["multianimalproject"]:
        (
            individuals,
            uniquebodyparts,
            multianimalbodyparts,
        ) = auxfun_multianimal.extractindividualsandbodyparts(cfg)

        # Loading human annotatated data
        trainingsetfolder = auxiliaryfunctions.GetTrainingSetFolder(cfg)
        trainFraction = cfg["TrainingFraction"][trainingsetindex]
        datafn, metadatafn = auxiliaryfunctions.GetDataandMetaDataFilenames(
            trainingsetfolder, trainFraction, shuffle, cfg)
        modelfolder = os.path.join(
            cfg["project_path"],
            str(
                auxiliaryfunctions.GetModelFolder(trainFraction,
                                                  shuffle,
                                                  cfg,
                                                  modelprefix=modelprefix)),
        )

        # Load meta data & annotations
        (
            data,
            trainIndices,
            testIndices,
            trainFraction,
        ) = auxiliaryfunctions.LoadMetadata(
            os.path.join(cfg["project_path"], metadatafn))
        Data = pd.read_hdf(
            os.path.join(
                cfg["project_path"],
                str(trainingsetfolder),
                "CollectedData_" + cfg["scorer"] + ".h5",
            ))[cfg["scorer"]]

        path_test_config = Path(modelfolder) / "test" / "pose_cfg.yaml"
        dlc_cfg = load_config(str(path_test_config))

        # get the graph!
        partaffinityfield_graph = dlc_cfg["partaffinityfield_graph"]
        jointnames = [
            dlc_cfg["all_joints_names"][i]
            for i in range(len(dlc_cfg["all_joints"]))
        ]
        path_inferencebounds_config = (Path(modelfolder) / "test" /
                                       "inferencebounds.yaml")
        inferenceboundscfg = {}
        for pi, edge in enumerate(partaffinityfield_graph):
            j1, j2 = jointnames[edge[0]], jointnames[edge[1]]
            ds_within = []
            ds_across = []
            for ind in individuals:
                for ind2 in individuals:
                    if ind != "single" and ind2 != "single":
                        if (ind, j1, "x") in Data.keys() and (
                                ind2,
                                j2,
                                "y",
                        ) in Data.keys():
                            distances = (np.sqrt(
                                (Data[ind, j1, "x"] - Data[ind2, j2, "x"])**2 +
                                (Data[ind, j1, "y"] - Data[ind2, j2, "y"])**2)
                                         / dlc_cfg["stride"])
                        else:
                            distances = None

                        if distances is not None:
                            if onlytrain:
                                distances = distances.iloc[trainIndices]
                            if ind == ind2:
                                ds_within.extend(distances.values.flatten())
                            else:
                                ds_across.extend(distances.values.flatten())

            edgeencoding = str(edge[0]) + "_" + str(edge[1])
            inferenceboundscfg[edgeencoding] = {}
            if len(ds_within) > 0:
                inferenceboundscfg[edgeencoding]["intra_max"] = str(
                    round(np.nanmax(ds_within), numdigits))
                inferenceboundscfg[edgeencoding]["intra_min"] = str(
                    round(np.nanmin(ds_within), numdigits))
            else:
                inferenceboundscfg[edgeencoding]["intra_max"] = str(
                    1e5)  # large number (larger than any image diameter)
                inferenceboundscfg[edgeencoding]["intra_min"] = str(0)

            # NOTE: the inter-animal distances are currently not used, but are interesting to compare to intra_*
            if len(ds_across) > 0:
                inferenceboundscfg[edgeencoding]["inter_max"] = str(
                    round(np.nanmax(ds_across), numdigits))
                inferenceboundscfg[edgeencoding]["inter_min"] = str(
                    round(np.nanmin(ds_across), numdigits))
            else:
                inferenceboundscfg[edgeencoding]["inter_max"] = str(
                    1e5
                )  # large number (larger than image diameters in typical experiments)
                inferenceboundscfg[edgeencoding]["inter_min"] = str(0)

        auxiliaryfunctions.write_plainconfig(str(path_inferencebounds_config),
                                             dict(inferenceboundscfg))
        return inferenceboundscfg
    else:
        print("You might as well bring owls to Athens.")
        return {}
Esempio n. 7
0
def evaluate_multianimal_full(
    config,
    Shuffles=[1],
    trainingsetindex=0,
    plotting=None,
    show_errors=True,
    comparisonbodyparts="all",
    gputouse=None,
    modelprefix="",
    c_engine=False,
):
    from deeplabcut.pose_estimation_tensorflow.nnet import predict
    from deeplabcut.pose_estimation_tensorflow.nnet import (
        predict_multianimal as predictma, )
    from deeplabcut.utils import auxiliaryfunctions, auxfun_multianimal

    import tensorflow as tf

    if "TF_CUDNN_USE_AUTOTUNE" in os.environ:
        del os.environ[
            "TF_CUDNN_USE_AUTOTUNE"]  # was potentially set during training

    tf.reset_default_graph()
    os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2"  #
    if gputouse is not None:  # gpu selectinon
        os.environ["CUDA_VISIBLE_DEVICES"] = str(gputouse)

    start_path = os.getcwd()

    ##################################################
    # Load data...
    ##################################################
    cfg = auxiliaryfunctions.read_config(config)
    if trainingsetindex == "all":
        TrainingFractions = cfg["TrainingFraction"]
    else:
        TrainingFractions = [cfg["TrainingFraction"][trainingsetindex]]

    # Loading human annotatated data
    trainingsetfolder = auxiliaryfunctions.GetTrainingSetFolder(cfg)
    Data = pd.read_hdf(
        os.path.join(
            cfg["project_path"],
            str(trainingsetfolder),
            "CollectedData_" + cfg["scorer"] + ".h5",
        ),
        "df_with_missing",
    )
    # Handle data previously annotated on a different platform
    sep = "/" if "/" in Data.index[0] else "\\"
    if sep != os.path.sep:
        Data.index = Data.index.str.replace(sep, os.path.sep)
    # Get list of body parts to evaluate network for
    comparisonbodyparts = auxiliaryfunctions.IntersectionofBodyPartsandOnesGivenbyUser(
        cfg, comparisonbodyparts)
    all_bpts = np.asarray(
        len(cfg["individuals"]) * cfg["multianimalbodyparts"] +
        cfg["uniquebodyparts"])
    colors = visualization.get_cmap(len(comparisonbodyparts),
                                    name=cfg["colormap"])
    # Make folder for evaluation
    auxiliaryfunctions.attempttomakefolder(
        str(cfg["project_path"] + "/evaluation-results/"))
    for shuffle in Shuffles:
        for trainFraction in TrainingFractions:
            ##################################################
            # Load and setup CNN part detector
            ##################################################
            datafn, metadatafn = auxiliaryfunctions.GetDataandMetaDataFilenames(
                trainingsetfolder, trainFraction, shuffle, cfg)
            modelfolder = os.path.join(
                cfg["project_path"],
                str(
                    auxiliaryfunctions.GetModelFolder(
                        trainFraction, shuffle, cfg, modelprefix=modelprefix)),
            )
            path_test_config = Path(modelfolder) / "test" / "pose_cfg.yaml"

            # Load meta data
            (
                data,
                trainIndices,
                testIndices,
                trainFraction,
            ) = auxiliaryfunctions.LoadMetadata(
                os.path.join(cfg["project_path"], metadatafn))

            try:
                dlc_cfg = load_config(str(path_test_config))
            except FileNotFoundError:
                raise FileNotFoundError(
                    "It seems the model for shuffle %s and trainFraction %s does not exist."
                    % (shuffle, trainFraction))

            # TODO: IMPLEMENT for different batch sizes?
            dlc_cfg["batch_size"] = 1  # due to differently sized images!!!

            joints = dlc_cfg["all_joints_names"]

            # Create folder structure to store results.
            evaluationfolder = os.path.join(
                cfg["project_path"],
                str(
                    auxiliaryfunctions.GetEvaluationFolder(
                        trainFraction, shuffle, cfg, modelprefix=modelprefix)),
            )
            auxiliaryfunctions.attempttomakefolder(evaluationfolder,
                                                   recursive=True)
            # path_train_config = modelfolder / 'train' / 'pose_cfg.yaml'

            # Check which snapshots are available and sort them by # iterations
            Snapshots = np.array([
                fn.split(".")[0]
                for fn in os.listdir(os.path.join(str(modelfolder), "train"))
                if "index" in fn
            ])
            if len(Snapshots) == 0:
                print(
                    "Snapshots not found! It seems the dataset for shuffle %s and trainFraction %s is not trained.\nPlease train it before evaluating.\nUse the function 'train_network' to do so."
                    % (shuffle, trainFraction))
            else:
                increasing_indices = np.argsort(
                    [int(m.split("-")[1]) for m in Snapshots])
                Snapshots = Snapshots[increasing_indices]

                if cfg["snapshotindex"] == -1:
                    snapindices = [-1]
                elif cfg["snapshotindex"] == "all":
                    snapindices = range(len(Snapshots))
                elif cfg["snapshotindex"] < len(Snapshots):
                    snapindices = [cfg["snapshotindex"]]
                else:
                    print(
                        "Invalid choice, only -1 (last), any integer up to last, or all (as string)!"
                    )

                final_result = []
                ##################################################
                # Compute predictions over images
                ##################################################
                for snapindex in snapindices:
                    dlc_cfg["init_weights"] = os.path.join(
                        str(modelfolder), "train", Snapshots[snapindex]
                    )  # setting weights to corresponding snapshot.
                    trainingsiterations = (
                        dlc_cfg["init_weights"].split(os.sep)[-1]
                    ).split(
                        "-"
                    )[-1]  # read how many training siterations that corresponds to.

                    # name for deeplabcut net (based on its parameters)
                    DLCscorer, DLCscorerlegacy = auxiliaryfunctions.GetScorerName(
                        cfg,
                        shuffle,
                        trainFraction,
                        trainingsiterations,
                        modelprefix=modelprefix,
                    )
                    print(
                        "Running ",
                        DLCscorer,
                        " with # of trainingiterations:",
                        trainingsiterations,
                    )
                    (
                        notanalyzed,
                        resultsfilename,
                        DLCscorer,
                    ) = auxiliaryfunctions.CheckifNotEvaluated(
                        str(evaluationfolder),
                        DLCscorer,
                        DLCscorerlegacy,
                        Snapshots[snapindex],
                    )

                    if os.path.isfile(
                            resultsfilename.split(".h5")[0] + "_full.pickle"):
                        print("Model already evaluated.", resultsfilename)
                    else:
                        if plotting:
                            foldername = os.path.join(
                                str(evaluationfolder),
                                "LabeledImages_" + DLCscorer + "_" +
                                Snapshots[snapindex],
                            )
                            auxiliaryfunctions.attempttomakefolder(foldername)

                        # print(dlc_cfg)
                        # Specifying state of model (snapshot / training state)
                        sess, inputs, outputs = predict.setup_pose_prediction(
                            dlc_cfg)

                        PredicteData = {}
                        dist = np.full((len(Data), len(all_bpts)), np.nan)
                        conf = np.full_like(dist, np.nan)
                        distnorm = np.full(len(Data), np.nan)
                        print("Analyzing data...")
                        for imageindex, imagename in tqdm(enumerate(
                                Data.index)):
                            image_path = os.path.join(cfg["project_path"],
                                                      imagename)
                            image = io.imread(image_path)
                            frame = img_as_ubyte(skimage.color.gray2rgb(image))

                            GT = Data.iloc[imageindex]
                            df = GT.unstack("coords").reindex(
                                joints, level='bodyparts')

                            # Evaluate PAF edge lengths to calibrate `distnorm`
                            temp = GT.unstack("bodyparts")[joints]
                            xy = temp.values.reshape(
                                (-1, 2, temp.shape[1])).swapaxes(1, 2)
                            edges = xy[:, dlc_cfg["partaffinityfield_graph"]]
                            lengths = np.sum(
                                (edges[:, :, 0] - edges[:, :, 1])**2, axis=2)
                            distnorm[imageindex] = np.nanmax(lengths)

                            # FIXME Is having an empty array vs nan really that necessary?!
                            groundtruthidentity = list(
                                df.index.get_level_values(
                                    "individuals").to_numpy().reshape((-1, 1)))
                            groundtruthcoordinates = list(
                                df.values[:, np.newaxis])
                            for i, coords in enumerate(groundtruthcoordinates):
                                if np.isnan(coords).any():
                                    groundtruthcoordinates[i] = np.empty(
                                        (0, 2), dtype=float)
                                    groundtruthidentity[i] = np.array(
                                        [], dtype=str)

                            PredicteData[imagename] = {}
                            PredicteData[imagename]["index"] = imageindex

                            pred = predictma.get_detectionswithcostsandGT(
                                frame,
                                groundtruthcoordinates,
                                dlc_cfg,
                                sess,
                                inputs,
                                outputs,
                                outall=False,
                                nms_radius=dlc_cfg.nmsradius,
                                det_min_score=dlc_cfg.minconfidence,
                                c_engine=c_engine,
                            )
                            PredicteData[imagename]["prediction"] = pred
                            PredicteData[imagename]["groundtruth"] = [
                                groundtruthidentity,
                                groundtruthcoordinates,
                                GT,
                            ]

                            coords_pred = pred["coordinates"][0]
                            probs_pred = pred["confidence"]
                            for bpt, xy_gt in df.groupby(level="bodyparts"):
                                inds_gt = np.flatnonzero(
                                    np.all(~np.isnan(xy_gt), axis=1))
                                n_joint = joints.index(bpt)
                                xy = coords_pred[n_joint]
                                if inds_gt.size and xy.size:
                                    # Pick the predictions closest to ground truth,
                                    # rather than the ones the model has most confident in
                                    d = cdist(xy_gt.iloc[inds_gt], xy)
                                    rows, cols = linear_sum_assignment(d)
                                    min_dists = d[rows, cols]
                                    inds = np.flatnonzero(all_bpts == bpt)
                                    sl = imageindex, inds[inds_gt[rows]]
                                    dist[sl] = min_dists
                                    conf[sl] = probs_pred[n_joint][
                                        cols].squeeze()

                            if plotting:
                                fig = visualization.make_multianimal_labeled_image(
                                    frame,
                                    groundtruthcoordinates,
                                    coords_pred,
                                    probs_pred,
                                    colors,
                                    cfg["dotsize"],
                                    cfg["alphavalue"],
                                    cfg["pcutoff"],
                                )

                                visualization.save_labeled_frame(
                                    fig,
                                    image_path,
                                    foldername,
                                    imageindex in trainIndices,
                                )

                        sess.close()  # closes the current tf session

                        # Compute all distance statistics
                        df_dist = pd.DataFrame(dist, columns=df.index)
                        df_conf = pd.DataFrame(conf, columns=df.index)
                        df_joint = pd.concat([df_dist, df_conf],
                                             keys=["rmse", "conf"],
                                             names=["metrics"],
                                             axis=1)
                        df_joint = df_joint.reorder_levels(list(
                            np.roll(df_joint.columns.names, -1)),
                                                           axis=1)
                        df_joint.sort_index(axis=1,
                                            level=["individuals", "bodyparts"],
                                            ascending=[True, True],
                                            inplace=True)
                        write_path = os.path.join(
                            evaluationfolder,
                            f"dist_{trainingsiterations}.csv")
                        df_joint.to_csv(write_path)

                        # Calculate overall prediction error
                        error = df_joint.xs("rmse", level="metrics", axis=1)
                        mask = df_joint.xs("conf", level="metrics",
                                           axis=1) >= cfg["pcutoff"]
                        error_masked = error[mask]
                        error_train = np.nanmean(error.iloc[trainIndices])
                        error_train_cut = np.nanmean(
                            error_masked.iloc[trainIndices])
                        error_test = np.nanmean(error.iloc[testIndices])
                        error_test_cut = np.nanmean(
                            error_masked.iloc[testIndices])
                        results = [
                            trainingsiterations,
                            int(100 * trainFraction),
                            shuffle,
                            np.round(error_train, 2),
                            np.round(error_test, 2),
                            cfg["pcutoff"],
                            np.round(error_train_cut, 2),
                            np.round(error_test_cut, 2),
                        ]
                        final_result.append(results)

                        # For OKS/PCK, compute the standard deviation error across all frames
                        sd = df_dist.groupby("bodyparts",
                                             axis=1).mean().std(axis=0)
                        sd["distnorm"] = np.sqrt(np.nanmax(distnorm))
                        sd.to_csv(write_path.replace("dist.csv", "sd.csv"))

                        if show_errors:
                            string = "Results for {} training iterations: {}, shuffle {}:\n" \
                                     "Train error: {} pixels. Test error: {} pixels.\n" \
                                     "With pcutoff of {}:\n" \
                                     "Train error: {} pixels. Test error: {} pixels."
                            print(string.format(*results))

                            print("##########################################")
                            print(
                                "Average Euclidean distance to GT per individual (in pixels)"
                            )
                            print(
                                error_masked.groupby(
                                    'individuals',
                                    axis=1).mean().mean().to_string())
                            print(
                                "Average Euclidean distance to GT per bodypart (in pixels)"
                            )
                            print(
                                error_masked.groupby(
                                    'bodyparts',
                                    axis=1).mean().mean().to_string())

                        PredicteData["metadata"] = {
                            "nms radius":
                            dlc_cfg.nmsradius,
                            "minimal confidence":
                            dlc_cfg.minconfidence,
                            "PAFgraph":
                            dlc_cfg.partaffinityfield_graph,
                            "all_joints":
                            [[i] for i in range(len(dlc_cfg.all_joints))],
                            "all_joints_names": [
                                dlc_cfg.all_joints_names[i]
                                for i in range(len(dlc_cfg.all_joints))
                            ],
                            "stride":
                            dlc_cfg.get("stride", 8),
                        }
                        print(
                            "Done and results stored for snapshot: ",
                            Snapshots[snapindex],
                        )

                        dictionary = {
                            "Scorer": DLCscorer,
                            "DLC-model-config file": dlc_cfg,
                            "trainIndices": trainIndices,
                            "testIndices": testIndices,
                            "trainFraction": trainFraction,
                        }
                        metadata = {"data": dictionary}
                        auxfun_multianimal.SaveFullMultiAnimalData(
                            PredicteData, metadata, resultsfilename)

                        tf.reset_default_graph()

                if len(final_result
                       ) > 0:  # Only append if results were calculated
                    make_results_file(final_result, evaluationfolder,
                                      DLCscorer)

    # returning to intial folder
    os.chdir(str(start_path))
Esempio n. 8
0
def extract_maps(
    config,
    shuffle=0,
    trainingsetindex=0,
    gputouse=None,
    rescale=False,
    Indices=None,
    modelprefix="",
):
    """
    Extracts the scoremap, locref, partaffinityfields (if available).

    Returns a dictionary indexed by: trainingsetfraction, snapshotindex, and imageindex
    for those keys, each item contains: (image,scmap,locref,paf,bpt names,partaffinity graph, imagename, True/False if this image was in trainingset)
    ----------
    config : string
        Full path of the config.yaml file as a string.

    shuffle: integer
        integers specifying shuffle index of the training dataset. The default is 0.

    trainingsetindex: int, optional
        Integer specifying which TrainingsetFraction to use. By default the first (note that TrainingFraction is a list in config.yaml). This
        variable can also be set to "all".

    rescale: bool, default False
        Evaluate the model at the 'global_scale' variable (as set in the test/pose_config.yaml file for a particular project). I.e. every
        image will be resized according to that scale and prediction will be compared to the resized ground truth. The error will be reported
        in pixels at rescaled to the *original* size. I.e. For a [200,200] pixel image evaluated at global_scale=.5, the predictions are calculated
        on [100,100] pixel images, compared to 1/2*ground truth and this error is then multiplied by 2!. The evaluation images are also shown for the
        original size!

    Examples
    --------
    If you want to extract the data for image 0 and 103 (of the training set) for model trained with shuffle 0.
    >>> deeplabcut.extract_maps(configfile,0,Indices=[0,103])

    """
    from deeplabcut.utils.auxfun_videos import imread, imresize
    from deeplabcut.pose_estimation_tensorflow.nnet import predict
    from deeplabcut.pose_estimation_tensorflow.nnet import (
        predict_multianimal as predictma, )
    from deeplabcut.pose_estimation_tensorflow.config import load_config
    from deeplabcut.pose_estimation_tensorflow.dataset.pose_dataset import data_to_input
    from deeplabcut.utils import auxiliaryfunctions
    from tqdm import tqdm
    import tensorflow as tf

    vers = (tf.__version__).split(".")
    if int(vers[0]) == 1 and int(vers[1]) > 12:
        TF = tf.compat.v1
    else:
        TF = tf

    import pandas as pd
    from pathlib import Path
    import numpy as np

    TF.reset_default_graph()
    os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2"  #
    #    tf.logging.set_verbosity(tf.logging.WARN)

    start_path = os.getcwd()
    # Read file path for pose_config file. >> pass it on
    cfg = auxiliaryfunctions.read_config(config)

    if gputouse is not None:  # gpu selectinon
        os.environ["CUDA_VISIBLE_DEVICES"] = str(gputouse)

    if trainingsetindex == "all":
        TrainingFractions = cfg["TrainingFraction"]
    else:
        if trainingsetindex < len(
                cfg["TrainingFraction"]) and trainingsetindex >= 0:
            TrainingFractions = [
                cfg["TrainingFraction"][int(trainingsetindex)]
            ]
        else:
            raise Exception(
                "Please check the trainingsetindex! ",
                trainingsetindex,
                " should be an integer from 0 .. ",
                int(len(cfg["TrainingFraction"]) - 1),
            )

    # Loading human annotatated data
    trainingsetfolder = auxiliaryfunctions.GetTrainingSetFolder(cfg)
    Data = pd.read_hdf(
        os.path.join(
            cfg["project_path"],
            str(trainingsetfolder),
            "CollectedData_" + cfg["scorer"] + ".h5",
        ),
        "df_with_missing",
    )

    # Make folder for evaluation
    auxiliaryfunctions.attempttomakefolder(
        str(cfg["project_path"] + "/evaluation-results/"))

    Maps = {}
    for trainFraction in TrainingFractions:
        Maps[trainFraction] = {}
        ##################################################
        # Load and setup CNN part detector
        ##################################################
        datafn, metadatafn = auxiliaryfunctions.GetDataandMetaDataFilenames(
            trainingsetfolder, trainFraction, shuffle, cfg)

        modelfolder = os.path.join(
            cfg["project_path"],
            str(
                auxiliaryfunctions.GetModelFolder(trainFraction,
                                                  shuffle,
                                                  cfg,
                                                  modelprefix=modelprefix)),
        )
        path_test_config = Path(modelfolder) / "test" / "pose_cfg.yaml"
        # Load meta data
        (
            data,
            trainIndices,
            testIndices,
            trainFraction,
        ) = auxiliaryfunctions.LoadMetadata(
            os.path.join(cfg["project_path"], metadatafn))
        try:
            dlc_cfg = load_config(str(path_test_config))
        except FileNotFoundError:
            raise FileNotFoundError(
                "It seems the model for shuffle %s and trainFraction %s does not exist."
                % (shuffle, trainFraction))

        # change batch size, if it was edited during analysis!
        dlc_cfg["batch_size"] = 1  # in case this was edited for analysis.

        # Create folder structure to store results.
        evaluationfolder = os.path.join(
            cfg["project_path"],
            str(
                auxiliaryfunctions.GetEvaluationFolder(
                    trainFraction, shuffle, cfg, modelprefix=modelprefix)),
        )
        auxiliaryfunctions.attempttomakefolder(evaluationfolder,
                                               recursive=True)
        # path_train_config = modelfolder / 'train' / 'pose_cfg.yaml'

        # Check which snapshots are available and sort them by # iterations
        Snapshots = np.array([
            fn.split(".")[0]
            for fn in os.listdir(os.path.join(str(modelfolder), "train"))
            if "index" in fn
        ])
        try:  # check if any where found?
            Snapshots[0]
        except IndexError:
            raise FileNotFoundError(
                "Snapshots not found! It seems the dataset for shuffle %s and trainFraction %s is not trained.\nPlease train it before evaluating.\nUse the function 'train_network' to do so."
                % (shuffle, trainFraction))

        increasing_indices = np.argsort(
            [int(m.split("-")[1]) for m in Snapshots])
        Snapshots = Snapshots[increasing_indices]

        if cfg["snapshotindex"] == -1:
            snapindices = [-1]
        elif cfg["snapshotindex"] == "all":
            snapindices = range(len(Snapshots))
        elif cfg["snapshotindex"] < len(Snapshots):
            snapindices = [cfg["snapshotindex"]]
        else:
            print(
                "Invalid choice, only -1 (last), any integer up to last, or all (as string)!"
            )

        ########################### RESCALING (to global scale)
        scale = dlc_cfg["global_scale"] if rescale else 1
        Data *= scale

        bptnames = [
            dlc_cfg["all_joints_names"][i]
            for i in range(len(dlc_cfg["all_joints"]))
        ]

        for snapindex in snapindices:
            dlc_cfg["init_weights"] = os.path.join(
                str(modelfolder), "train", Snapshots[snapindex]
            )  # setting weights to corresponding snapshot.
            trainingsiterations = (
                dlc_cfg["init_weights"].split(os.sep)[-1]
            ).split("-")[
                -1]  # read how many training siterations that corresponds to.

            # Name for deeplabcut net (based on its parameters)
            # DLCscorer,DLCscorerlegacy = auxiliaryfunctions.GetScorerName(cfg,shuffle,trainFraction,trainingsiterations)
            # notanalyzed, resultsfilename, DLCscorer=auxiliaryfunctions.CheckifNotEvaluated(str(evaluationfolder),DLCscorer,DLCscorerlegacy,Snapshots[snapindex])
            # print("Extracting maps for ", DLCscorer, " with # of trainingiterations:", trainingsiterations)
            # if notanalyzed: #this only applies to ask if h5 exists...

            # Specifying state of model (snapshot / training state)
            sess, inputs, outputs = predict.setup_pose_prediction(dlc_cfg)
            Numimages = len(Data.index)
            PredicteData = np.zeros(
                (Numimages, 3 * len(dlc_cfg["all_joints_names"])))
            print("Analyzing data...")
            if Indices is None:
                Indices = enumerate(Data.index)
            else:
                Ind = [Data.index[j] for j in Indices]
                Indices = enumerate(Ind)

            DATA = {}
            for imageindex, imagename in tqdm(Indices):
                image = imread(os.path.join(cfg["project_path"], imagename),
                               mode="RGB")
                if scale != 1:
                    image = imresize(image, scale)

                image_batch = data_to_input(image)
                # Compute prediction with the CNN
                outputs_np = sess.run(outputs, feed_dict={inputs: image_batch})

                if cfg.get("multianimalproject", False):
                    scmap, locref, paf = predictma.extract_cnn_output(
                        outputs_np, dlc_cfg)
                    pagraph = dlc_cfg["partaffinityfield_graph"]
                else:
                    scmap, locref = predict.extract_cnn_output(
                        outputs_np, dlc_cfg)
                    paf = None
                    pagraph = []

                if imageindex in testIndices:
                    trainingfram = False
                else:
                    trainingfram = True

                DATA[imageindex] = [
                    image,
                    scmap,
                    locref,
                    paf,
                    bptnames,
                    pagraph,
                    imagename,
                    trainingfram,
                ]
            Maps[trainFraction][Snapshots[snapindex]] = DATA
    os.chdir(str(start_path))
    return Maps
Esempio n. 9
0
def evaluate_network(config,
                     Shuffles=[1],
                     plotting=None,
                     show_errors=True,
                     comparisonbodyparts="all",
                     gputouse=None):
    """
    Evaluates the network based on the saved models at different stages of the training network.\n
    The evaluation results are stored in the .h5 and .csv file under the subdirectory 'evaluation_results'.
    Change the snapshotindex parameter in the config file to 'all' in order to evaluate all the saved models.

    Parameters
    ----------
    config : string
        Full path of the config.yaml file as a string.

    Shuffles: list, optional
        List of integers specifying the shuffle indices of the training dataset. The default is [1]

    plotting: bool, optional
        Plots the predictions on the train and test images. The default is ``False``; if provided it must be either ``True`` or ``False``

    show_errors: bool, optional
        Display train and test errors. The default is `True``

    comparisonbodyparts: list of bodyparts, Default is "all".
        The average error will be computed for those body parts only (Has to be a subset of the body parts).

    gputouse: int, optional. Natural number indicating the number of your GPU (see number in nvidia-smi). If you do not have a GPU put None.
    See: https://nvidia.custhelp.com/app/answers/detail/a_id/3751/~/useful-nvidia-smi-queries

    Examples
    --------
    If you do not want to plot
    >>> deeplabcut.evaluate_network('/analysis/project/reaching-task/config.yaml', shuffle=[1])
    --------

    If you want to plot
    >>> deeplabcut.evaluate_network('/analysis/project/reaching-task/config.yaml',shuffle=[1],True)
    """
    import os
    from skimage import io
    import skimage.color

    from deeplabcut.pose_estimation_tensorflow.nnet import predict as ptf_predict
    from deeplabcut.pose_estimation_tensorflow.config import load_config
    from deeplabcut.pose_estimation_tensorflow.dataset.pose_dataset import data_to_input
    from deeplabcut.utils import auxiliaryfunctions, visualization
    import tensorflow as tf

    if 'TF_CUDNN_USE_AUTOTUNE' in os.environ:
        del os.environ[
            'TF_CUDNN_USE_AUTOTUNE']  #was potentially set during training

    vers = (tf.__version__).split('.')
    if int(vers[0]) == 1 and int(vers[1]) > 12:
        TF = tf.compat.v1
    else:
        TF = tf

    TF.reset_default_graph()

    os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'  #
    #    tf.logging.set_verbosity(tf.logging.WARN)

    start_path = os.getcwd()
    # Read file path for pose_config file. >> pass it on
    cfg = auxiliaryfunctions.read_config(config)
    if gputouse is not None:  #gpu selectinon
        os.environ['CUDA_VISIBLE_DEVICES'] = str(gputouse)

    # Loading human annotatated data
    trainingsetfolder = auxiliaryfunctions.GetTrainingSetFolder(cfg)
    Data = pd.read_hdf(
        os.path.join(cfg["project_path"], str(trainingsetfolder),
                     'CollectedData_' + cfg["scorer"] + '.h5'),
        'df_with_missing')
    # Get list of body parts to evaluate network for
    comparisonbodyparts = auxiliaryfunctions.IntersectionofBodyPartsandOnesGivenbyUser(
        cfg, comparisonbodyparts)
    # Make folder for evaluation
    auxiliaryfunctions.attempttomakefolder(
        str(cfg["project_path"] + "/evaluation-results/"))
    for shuffle in Shuffles:
        for trainFraction in cfg["TrainingFraction"]:
            ##################################################
            # Load and setup CNN part detector
            ##################################################
            datafn, metadatafn = auxiliaryfunctions.GetDataandMetaDataFilenames(
                trainingsetfolder, trainFraction, shuffle, cfg)
            modelfolder = os.path.join(
                cfg["project_path"],
                str(
                    auxiliaryfunctions.GetModelFolder(trainFraction, shuffle,
                                                      cfg)))
            path_test_config = Path(modelfolder) / 'test' / 'pose_cfg.yaml'
            # Load meta data
            data, trainIndices, testIndices, trainFraction = auxiliaryfunctions.LoadMetadata(
                os.path.join(cfg["project_path"], metadatafn))

            try:
                dlc_cfg = load_config(str(path_test_config))
            except FileNotFoundError:
                raise FileNotFoundError(
                    "It seems the model for shuffle %s and trainFraction %s does not exist."
                    % (shuffle, trainFraction))

            #change batch size, if it was edited during analysis!
            dlc_cfg['batch_size'] = 1  #in case this was edited for analysis.
            #Create folder structure to store results.
            evaluationfolder = os.path.join(
                cfg["project_path"],
                str(
                    auxiliaryfunctions.GetEvaluationFolder(
                        trainFraction, shuffle, cfg)))
            auxiliaryfunctions.attempttomakefolder(evaluationfolder,
                                                   recursive=True)
            #path_train_config = modelfolder / 'train' / 'pose_cfg.yaml'

            # Check which snapshots are available and sort them by # iterations
            Snapshots = np.array([
                fn.split('.')[0]
                for fn in os.listdir(os.path.join(str(modelfolder), 'train'))
                if "index" in fn
            ])
            try:  #check if any where found?
                Snapshots[0]
            except IndexError:
                raise FileNotFoundError(
                    "Snapshots not found! It seems the dataset for shuffle %s and trainFraction %s is not trained.\nPlease train it before evaluating.\nUse the function 'train_network' to do so."
                    % (shuffle, trainFraction))

            increasing_indices = np.argsort(
                [int(m.split('-')[1]) for m in Snapshots])
            Snapshots = Snapshots[increasing_indices]

            if cfg["snapshotindex"] == -1:
                snapindices = [-1]
            elif cfg["snapshotindex"] == "all":
                snapindices = range(len(Snapshots))
            elif cfg["snapshotindex"] < len(Snapshots):
                snapindices = [cfg["snapshotindex"]]
            else:
                print(
                    "Invalid choice, only -1 (last), any integer up to last, or all (as string)!"
                )

            final_result = []
            ##################################################
            # Compute predictions over images
            ##################################################
            for snapindex in snapindices:
                dlc_cfg['init_weights'] = os.path.join(
                    str(modelfolder), 'train', Snapshots[snapindex]
                )  #setting weights to corresponding snapshot.
                trainingsiterations = (
                    dlc_cfg['init_weights'].split(os.sep)[-1]
                ).split(
                    '-'
                )[-1]  #read how many training siterations that corresponds to.

                #name for deeplabcut net (based on its parameters)
                DLCscorer = auxiliaryfunctions.GetScorerName(
                    cfg, shuffle, trainFraction, trainingsiterations)
                print("Running ", DLCscorer, " with # of trainingiterations:",
                      trainingsiterations)
                resultsfilename = os.path.join(
                    str(evaluationfolder),
                    DLCscorer + '-' + Snapshots[snapindex] + '.h5')
                try:
                    DataMachine = pd.read_hdf(resultsfilename,
                                              'df_with_missing')
                    print("This net has already been evaluated!")
                except FileNotFoundError:
                    # Specifying state of model (snapshot / training state)
                    sess, inputs, outputs = ptf_predict.setup_pose_prediction(
                        dlc_cfg)

                    Numimages = len(Data.index)
                    PredicteData = np.zeros(
                        (Numimages, 3 * len(dlc_cfg['all_joints_names'])))
                    print("Analyzing data...")
                    for imageindex, imagename in tqdm(enumerate(Data.index)):
                        image = io.imread(os.path.join(cfg['project_path'],
                                                       imagename),
                                          mode='RGB')
                        image = skimage.color.gray2rgb(image)
                        image_batch = data_to_input(image)

                        # Compute prediction with the CNN
                        outputs_np = sess.run(outputs,
                                              feed_dict={inputs: image_batch})
                        scmap, locref = ptf_predict.extract_cnn_output(
                            outputs_np, dlc_cfg)

                        # Extract maximum scoring location from the heatmap, assume 1 person
                        pose = ptf_predict.argmax_pose_predict(
                            scmap, locref, dlc_cfg.stride)
                        PredicteData[imageindex, :] = pose.flatten(
                        )  # NOTE: thereby     cfg_test['all_joints_names'] should be same order as bodyparts!

                    sess.close()  #closes the current tf session

                    index = pd.MultiIndex.from_product(
                        [[DLCscorer], dlc_cfg['all_joints_names'],
                         ['x', 'y', 'likelihood']],
                        names=['scorer', 'bodyparts', 'coords'])

                    # Saving results
                    DataMachine = pd.DataFrame(PredicteData,
                                               columns=index,
                                               index=Data.index.values)
                    DataMachine.to_hdf(resultsfilename,
                                       'df_with_missing',
                                       format='table',
                                       mode='w')

                    print("Done and results stored for snapshot: ",
                          Snapshots[snapindex])
                    DataCombined = pd.concat([Data.T, DataMachine.T], axis=0).T
                    RMSE, RMSEpcutoff = pairwisedistances(
                        DataCombined, cfg["scorer"], DLCscorer, cfg["pcutoff"],
                        comparisonbodyparts)
                    testerror = np.nanmean(
                        RMSE.iloc[testIndices].values.flatten())
                    trainerror = np.nanmean(
                        RMSE.iloc[trainIndices].values.flatten())
                    testerrorpcutoff = np.nanmean(
                        RMSEpcutoff.iloc[testIndices].values.flatten())
                    trainerrorpcutoff = np.nanmean(
                        RMSEpcutoff.iloc[trainIndices].values.flatten())
                    results = [
                        trainingsiterations,
                        int(100 * trainFraction), shuffle,
                        np.round(trainerror, 2),
                        np.round(testerror, 2), cfg["pcutoff"],
                        np.round(trainerrorpcutoff, 2),
                        np.round(testerrorpcutoff, 2)
                    ]
                    final_result.append(results)

                    if show_errors == True:
                        print("Results for",
                              trainingsiterations, " training iterations:",
                              int(100 * trainFraction), shuffle,
                              "train error:",
                              np.round(trainerror, 2), "pixels. Test error:",
                              np.round(testerror, 2), " pixels.")
                        print("With pcutoff of",
                              cfg["pcutoff"], " train error:",
                              np.round(trainerrorpcutoff,
                                       2), "pixels. Test error:",
                              np.round(testerrorpcutoff, 2), "pixels")
                        print(
                            "Thereby, the errors are given by the average distances between the labels by DLC and the scorer."
                        )

                    if plotting == True:
                        print("Plotting...")
                        colors = visualization.get_cmap(
                            len(comparisonbodyparts), name=cfg['colormap'])

                        foldername = os.path.join(
                            str(evaluationfolder), 'LabeledImages_' +
                            DLCscorer + '_' + Snapshots[snapindex])
                        auxiliaryfunctions.attempttomakefolder(foldername)
                        NumFrames = np.size(DataCombined.index)
                        for ind in np.arange(NumFrames):
                            visualization.PlottingandSaveLabeledFrame(
                                DataCombined, ind, trainIndices, cfg, colors,
                                comparisonbodyparts, DLCscorer, foldername)

                    TF.reset_default_graph()
                    #print(final_result)
            make_results_file(final_result, evaluationfolder, DLCscorer)
            print(
                "The network is evaluated and the results are stored in the subdirectory 'evaluation_results'."
            )
            print(
                "If it generalizes well, choose the best model for prediction and update the config file with the appropriate index for the 'snapshotindex'.\nUse the function 'analyze_video' to make predictions on new videos."
            )
            print(
                "Otherwise consider retraining the network (see DeepLabCut workflow Fig 2)"
            )

    #returning to intial folder
    os.chdir(str(start_path))
Esempio n. 10
0
# load training file
trainingsnapshot_name, trainingsnapshot, dlc_cfg = load_dlc_snapshot(
    dlc_cfg, overwrite_snapshot=49999)

# Load metadata
from deeplabcut.utils import auxiliaryfunctions
import os
trainingsetindex = 0
trainFraction = cfg["TrainingFraction"][trainingsetindex]
trainingsetfolder = auxiliaryfunctions.GetTrainingSetFolder(cfg)
datafn, metadatafn = auxiliaryfunctions.GetDataandMetaDataFilenames(
    trainingsetfolder, trainFraction, shuffle, cfg)
modelfolder = os.path.join(
    cfg["project_path"],
    str(auxiliaryfunctions.GetModelFolder(trainFraction, shuffle, cfg)))
data, trainIndices, testIndices, trainFraction = auxiliaryfunctions.LoadMetadata(
    os.path.join(cfg["project_path"], metadatafn))

#%%
scale = dlc_cfg['global_scale']
Data = pd.read_hdf(
    os.path.join(cfg["project_path"], str(trainingsetfolder), 'CollectedData_'
                 + cfg["scorer"] + '.h5'), 'df_with_missing') * scale
#%%
num_labels, _ = Data.values.shape
labeled_frames = np.empty(num_labels).astype('int')
for frame_idx in range(num_labels):
    idx_name = int(Path(Data.iloc[frame_idx].name).stem[3:])
    labeled_frames[frame_idx] = idx_name

xys = Data.values.reshape((-1, data_info.nj, 2))
xrlabeled = xys[:, :, 0]
Esempio n. 11
0
def evaluate_multiview_network(config,videos,projection_matrices,multiview_step,snapshot_index=None,Shuffles=[1],plotting = None,show_errors = True,comparisonbodyparts="all",gputouse=None):
    """
    Evaluates the network based on the saved models at different stages of the training network.\n
    The evaluation results are stored in the .h5 and .csv file under the subdirectory 'evaluation_results'.
    Change the snapshotindex parameter in the config file to 'all' in order to evaluate all the saved models.

    Parameters
    ----------
    config : string
        Full path of the config.yaml file as a string.

    videos: list of strings
        Name of each video, one per viewpoint. Must be in the same order that it was in for training

    projection_matrices: list of arrays
        Projection matrix for each viewpoint. Each is a 3x4 array

    multiview_step:
        1 or 2. Indicates whether network was trained with train_multiview_network_step_1 or train_multiview_network_step_2

    Shuffles: list, optional
        List of integers specifying the shuffle indices of the training dataset. The default is [1]

    plotting: bool, optional
        Plots the predictions on the train and test images. The default is ``False``; if provided it must be either ``True`` or ``False``

    show_errors: bool, optional
        Display train and test errors. The default is `True``

    comparisonbodyparts: list of bodyparts, Default is "all".
        The average error will be computed for those body parts only (Has to be a subset of the body parts).

    gputouse: int, optional. Natural number indicating the number of your GPU (see number in nvidia-smi). If you do not have a GPU put None.
    See: https://nvidia.custhelp.com/app/answers/detail/a_id/3751/~/useful-nvidia-smi-queries
    
    Examples
    --------
    If you do not want to plot
    >>> deeplabcut.evaluate_network('/analysis/project/reaching-task/config.yaml', shuffle=[1])
    --------

    If you want to plot
    >>> deeplabcut.evaluate_network('/analysis/project/reaching-task/config.yaml',shuffle=[1],True)
    """
    import os
    from skimage import io
    import skimage.color

    from deeplabcut.pose_estimation_tensorflow.nnet import predict as ptf_predict
    from deeplabcut.pose_estimation_tensorflow.config import load_config
    from deeplabcut.pose_estimation_tensorflow.dataset.pose_dataset import data_to_input
    from deeplabcut.utils import auxiliaryfunctions, visualization
    import tensorflow as tf
    
    if 'TF_CUDNN_USE_AUTOTUNE' in os.environ:
        del os.environ['TF_CUDNN_USE_AUTOTUNE'] #was potentially set during training
    

    tf.reset_default_graph()
    os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' # 
#    tf.logging.set_verbosity(tf.logging.WARN)

    start_path=os.getcwd()
    # Read file path for pose_config file. >> pass it on
    cfg = auxiliaryfunctions.read_config(config)
    if gputouse is not None: #gpu selectinon
            os.environ['CUDA_VISIBLE_DEVICES'] = str(gputouse)
            
    # Loading human annotatated data
    trainingsetfolder=auxiliaryfunctions.GetTrainingSetFolder(cfg)
    Datas = [pd.read_hdf(os.path.join(cfg['project_path'], 'labeled-data', video, 'CollectedData_'+cfg['scorer']+'.h5'), 'df_with_missing') for video in videos]
    # Get list of body parts to evaluate network for
    comparisonbodyparts=auxiliaryfunctions.IntersectionofBodyPartsandOnesGivenbyUser(cfg,comparisonbodyparts)
    # Make folder for evaluation
    auxiliaryfunctions.attempttomakefolder(str(cfg["project_path"]+"/evaluation-results/"))
    for shuffle in Shuffles:
        for trainFraction in cfg["TrainingFraction"]:
            ##################################################
            # Load and setup CNN part detector
            ##################################################
            datafn,metadatafn=auxiliaryfunctions.GetDataandMetaDataFilenames(trainingsetfolder,trainFraction,shuffle,cfg)
            modelfolder=os.path.join(cfg["project_path"],str(auxiliaryfunctions.GetModelFolder(trainFraction,shuffle,cfg)))
            path_test_config = Path(modelfolder) / 'test' / 'pose_cfg.yaml'
            # Load meta data
            metadatas = []
            for video in videos:
                m = ('-'+video).join(os.path.splitext(metadatafn))
                data, trainIndices, testIndices, trainFraction=auxiliaryfunctions.LoadMetadata(os.path.join(cfg["project_path"],m))
                metadatas.append(data)

            try:
                dlc_cfg = load_config(str(path_test_config))
            except FileNotFoundError:
                raise FileNotFoundError("It seems the model for shuffle %s and trainFraction %s does not exist."%(shuffle,trainFraction))
            
            #change batch size, if it was edited during analysis!
            dlc_cfg['batch_size']=1 #in case this was edited for analysis.
            #Create folder structure to store results.
            evaluationfolder=os.path.join(cfg["project_path"],str(auxiliaryfunctions.GetEvaluationFolder(trainFraction,shuffle,cfg)))
            auxiliaryfunctions.attempttomakefolder(evaluationfolder,recursive=True)
            #path_train_config = modelfolder / 'train' / 'pose_cfg.yaml'

            dlc_cfg.multiview_step = multiview_step
            dlc_cfg.projection_matrices = projection_matrices
            
            # Check which snapshots are available and sort them by # iterations
            Snapshots = np.array([fn.split('.')[0]for fn in os.listdir(os.path.join(str(modelfolder), 'train'))if "index" in fn])
            try: #check if any where found?
              Snapshots[0]
            except IndexError:
              raise FileNotFoundError("Snapshots not found! It seems the dataset for shuffle %s and trainFraction %s is not trained.\nPlease train it before evaluating.\nUse the function 'train_network' to do so."%(shuffle,trainFraction))

            increasing_indices = np.argsort([int(m.split('-')[1]) for m in Snapshots])
            Snapshots = Snapshots[increasing_indices]

            if snapshot_index is not None:
                snapindices = [i for i in range(len(Snapshots)) if int(Snapshots[i].split('-')[1].split('.')[0])==snapshot_index]
            elif cfg["snapshotindex"] == -1:
                snapindices = [-1]
            elif cfg["snapshotindex"] == "all":
                snapindices = range(len(Snapshots))
            elif cfg["snapshotindex"]<len(Snapshots):
                snapindices=[cfg["snapshotindex"]]
            else:
                print("Invalid choice, only -1 (last), any integer up to last, or all (as string)!")

            final_result=[]
            ##################################################
            # Compute predictions over images
            ##################################################
            for snapindex in snapindices:
                dlc_cfg['init_weights'] = os.path.join(str(modelfolder),'train',Snapshots[snapindex]) #setting weights to corresponding snapshot.
                trainingsiterations = (dlc_cfg['init_weights'].split(os.sep)[-1]).split('-')[-1] #read how many training siterations that corresponds to.
                
                #name for deeplabcut net (based on its parameters)
                DLCscorer = auxiliaryfunctions.GetScorerName(cfg,shuffle,trainFraction,trainingsiterations)
                print("Running ", DLCscorer, " with # of trainingiterations:", trainingsiterations)
                resultsfilename=os.path.join(str(evaluationfolder),DLCscorer + '-' + Snapshots[snapindex]+  '.h5')
                try:
                    DataMachine = pd.read_hdf(resultsfilename,'df_with_missing')
                    print("This net has already been evaluated!")
                except FileNotFoundError:
                    # Specifying state of model (snapshot / training state)
                    sess, inputs, outputs = ptf_predict.setup_pose_prediction(dlc_cfg)

                    Numimages = len(Datas[0].index)
                    PredicteDatas = np.zeros((Numimages,len(Datas), 3 * len(dlc_cfg['all_joints_names'])))
                    imagesizes = []
                    print("Analyzing data...")
                    if multiview_step == 1:
                        for imageindex in tqdm(range(len(Datas[0].index))):
                            imagenames = [Data.index[imageindex] for Data in Datas]
                            images = [io.imread(os.path.join(cfg['project_path'],imagename),mode='RGB') for imagename in imagenames]
                            images = [skimage.color.gray2rgb(image) for image in images]
                            image_batch = images
                            imagesizes.append([image.shape for image in images])
                            
                            # Compute prediction with the CNN
                            outputs_np = sess.run(outputs, feed_dict={inputs: image_batch})
                            scmap, locref = ptf_predict.extract_cnn_output(outputs_np, dlc_cfg)

                            # Extract maximum scoring location from the heatmap, assume 1 person
                            pose = ptf_predict.argmax_pose_predict(scmap, locref, dlc_cfg.stride)
                            PredicteDatas[imageindex] = pose.reshape([pose.shape[0], -1])  # NOTE: thereby     cfg_test['all_joints_names'] should be same order as bodyparts!

                        sess.close() #closes the current tf session

                        index = pd.MultiIndex.from_product(
                            [[DLCscorer], dlc_cfg['all_joints_names'], ['x', 'y', 'likelihood']],
                            names=['scorer', 'bodyparts', 'coords'])

                        # Saving results
                        for i, video in enumerate(videos):
                            print('Evaluating 2D predictions on video %s'%video)
                            Data = Datas[i]
                            DataMachine = pd.DataFrame(PredicteDatas[:,i], columns=index, index=Data.index.values)
                            r = ('-'+video).join(os.path.splitext(resultsfilename))
                            DataMachine.to_hdf(r,'df_with_missing',format='table',mode='w')

                            print("Done and results stored for snapshot: ", Snapshots[snapindex])
                            DataCombined = pd.concat([Data.T, DataMachine.T], axis=0).T
                            RMSE,RMSEpcutoff = pairwisedistances(DataCombined, cfg["scorer"], DLCscorer,cfg["pcutoff"],comparisonbodyparts)
                            testerror = np.nanmean(RMSE.iloc[testIndices].values.flatten())
                            trainerror = np.nanmean(RMSE.iloc[trainIndices].values.flatten())
                            testerrorpcutoff = np.nanmean(RMSEpcutoff.iloc[testIndices].values.flatten())
                            trainerrorpcutoff = np.nanmean(RMSEpcutoff.iloc[trainIndices].values.flatten())
                            results = [trainingsiterations,int(100 * trainFraction),shuffle,np.round(trainerror,2),np.round(testerror,2),cfg["pcutoff"],np.round(trainerrorpcutoff,2), np.round(testerrorpcutoff,2)]
                            final_result.append(results)

                            if show_errors == True:
                                    print("Results for",trainingsiterations," training iterations:", int(100 * trainFraction), shuffle, "train error:",np.round(trainerror,2), "pixels. Test error:", np.round(testerror,2)," pixels.")
                                    print("With pcutoff of", cfg["pcutoff"]," train error:",np.round(trainerrorpcutoff,2), "pixels. Test error:", np.round(testerrorpcutoff,2), "pixels")
                                    print("Thereby, the errors are given by the average distances between the labels by DLC and the scorer.")

                            if plotting == True:
                                print("Plotting...")
                                colors = visualization.get_cmap(len(comparisonbodyparts),name=cfg['colormap'])

                                foldername=os.path.join(str(evaluationfolder),'LabeledImages_' + DLCscorer + '_' + Snapshots[snapindex]+'_'+video)
                                auxiliaryfunctions.attempttomakefolder(foldername)
                                NumFrames=np.size(DataCombined.index)
                                for ind in np.arange(NumFrames):
                                    visualization.PlottingandSaveLabeledFrame(DataCombined,ind,trainIndices,cfg,colors,comparisonbodyparts,DLCscorer,foldername)
                        
                        # get predictions in homogeneous pixel coordinates
                        # pixel coordinates have (0,0) in the top-left, and the bottom-right coordinate is (h,w)
                        predictions = PredicteDatas.reshape(Numimages, len(Datas), len(dlc_cfg['all_joints_names']), 3)
                        scores = np.copy(predictions[:,:,:,2])
                        predictions[:,:,:,2] = 1.0 # homogeneous coordinates; (x,y,1). Top-left corner is (-width/2, -height/2, 1); Bottom-right corner is opposite. Shape is num_images x num_views x num_joints x 3
                        num_ims, num_views, num_joints, _ = predictions.shape

                        # get labels in homogeneous pixel coordinates
                        labels = np.array([Data.values.reshape(num_ims, num_joints, 2) for Data in Datas]) # num_views x num_ims x num_joints x (x,y)
                        labels = np.transpose(labels, [1, 2, 0, 3]) # num_ims x num_joints x num_views x (x,y)
                        labels = np.concatenate([labels, np.ones([num_ims, num_joints, num_views, 1])], axis=3)

                        # solve linear system to get labels in 3D
                        # helpful explanation of equation found on pg 5 here: https://hal.inria.fr/inria-00524401/PDF/Sturm-cvpr05.pdf
                        labs = labels.reshape([num_ims * num_joints, num_views, 3]).astype(np.float)
                        confidences = ~np.isnan(np.sum(labs, axis=2))
                        valid = np.sum(~np.isnan(np.sum(labs, axis=2)), axis=1) >= 2
                        labs[~confidences] = 0
                        labels3d = project_3d(projection_matrices, labs, confidences=confidences)
                        labels3d[~valid] = np.nan
                        labels3d = labels3d.reshape([num_ims, num_joints, 3]) 

                        # solve linear system to get 3D predictions
                        preds = np.transpose(predictions, [0, 2, 1, 3]) # num_ims x num_joints x num_views x 3
                        preds = preds.reshape([num_ims*num_joints, num_views, 3])
                        preds3d = project_3d(projection_matrices, preds)
                        preds3d = preds3d.reshape([num_ims, num_joints, 3])
                        
                        # try it with confidence weighting
                        scores = np.transpose(scores, [0, 2, 1]) # num_images x num_joints x num_views
                        scores = np.reshape(scores, [num_ims*num_joints, num_views])
                        preds3d_weighted = project_3d(projection_matrices, preds, confidences=scores)
                        preds3d_weighted = preds3d_weighted.reshape([num_ims, num_joints, 3])

                        # try it with the pcutoff
                        scores2 = np.copy(scores)
                        scores2[scores2 < cfg["pcutoff"]] = 0
                        preds3d_weighted_cutoff = project_3d(projection_matrices, preds, confidences=scores2)
                        preds3d_weighted_cutoff = preds3d_weighted_cutoff.reshape([num_ims, num_joints, 3])

                        print("\n\n3D errors:")
                        RMSE_train = np.nanmean(np.nansum((preds3d[trainIndices] - labels3d[trainIndices])**2, axis=2)**0.5)
                        RMSE_test = np.nanmean(np.nansum((preds3d[testIndices] - labels3d[testIndices])**2, axis=2)**0.5)
                        RMSE_train_weighted = np.nanmean(np.nansum((preds3d_weighted[trainIndices] - labels3d[trainIndices])**2, axis=2)**0.5)
                        RMSE_test_weighted = np.nanmean(np.nansum((preds3d_weighted[testIndices] - labels3d[testIndices])**2, axis=2)**0.5)
                        RMSE_train_weighted_cutoff = np.nanmean(np.nansum((preds3d_weighted_cutoff[trainIndices] - labels3d[trainIndices])**2, axis=2)**0.5)
                        RMSE_test_weighted_cutoff = np.nanmean(np.nansum((preds3d_weighted_cutoff[testIndices] - labels3d[testIndices])**2, axis=2)**0.5)

                        print("RMSE train: ", RMSE_train)
                        print("RMSE test: ", RMSE_test)
                        print("RMSE train weighted: ", RMSE_train_weighted)
                        print("RMSE test weighted: ", RMSE_test_weighted)
                        print("RMSE train weighted cutoff: ", RMSE_train_weighted_cutoff)
                        print("RMSE test weighted cutoff: ", RMSE_test_weighted_cutoff) 

                        tail = np.nansum((preds3d_weighted - labels3d)**2, axis=2)**0.5
                        tail = np.sort(tail[~np.isnan(tail)])
                        tail = tail[-10:]
                        print('10 worst predictions: ', tail)

                        tf.reset_default_graph()
                    elif multiview_step==2:
                        preds3d = []
                        for imageindex in tqdm(range(len(Datas[0].index))):
                            imagenames = [Data.index[imageindex] for Data in Datas]
                            images = [io.imread(os.path.join(cfg['project_path'],imagename),mode='RGB') for imagename in imagenames]
                            images = [skimage.color.gray2rgb(image) for image in images]
                            image_batch = images
                            
                            # Compute prediction with the CNN
                            outputs_np = sess.run(outputs, feed_dict={inputs: image_batch})
                            pred_3d = outputs_np[2]
                            preds3d.append(pred_3d)

                        sess.close() #closes the current tf session
                        preds3d = np.array(preds3d) # num_ims x num_joints x (x,y,z)
                        num_ims, num_joints = preds3d.shape[:2]
                        num_views = dlc_cfg.num_views

                        # get labels in homogeneous pixel coordinates
                        labels = np.array([Data.values.reshape(num_ims, num_joints, 2) for Data in Datas]) # num_views x num_ims x num_joints x (x,y)
                        labels = np.transpose(labels, [1, 2, 0, 3]) # num_ims x num_joints x num_views x (x,y)
                        labels = np.concatenate([labels, np.ones([num_ims, num_joints, num_views, 1])], axis=3)

                        # solve linear system to get labels in 3D
                        # helpful explanation of equation found on pg 5 here: https://hal.inria.fr/inria-00524401/PDF/Sturm-cvpr05.pdf
                        labs = labels.reshape([num_ims * num_joints, num_views, 3]).astype(np.float)
                        confidences = ~np.isnan(np.sum(labs, axis=2))
                        valid = np.sum(~np.isnan(np.sum(labs, axis=2)), axis=1) >= 2
                        labs[~confidences] = 0
                        labels3d = project_3d(projection_matrices, labs, confidences=confidences)
                        labels3d[~valid] = np.nan
                        labels3d = labels3d.reshape([num_ims, num_joints, 3]) 

                        print("\n\n3D errors (units are determined by projection matrices):")
                        RMSE_train = np.nanmean(np.nansum((preds3d[trainIndices] - labels3d[trainIndices])**2, axis=2)**0.5)
                        RMSE_test = np.nanmean(np.nansum((preds3d[testIndices] - labels3d[testIndices])**2, axis=2)**0.5)

                        print("RMSE train: ", RMSE_train)
                        print("RMSE test: ", RMSE_test)

                        tail = np.nansum((preds3d- labels3d)**2, axis=2)**0.5
                        tail = np.sort(tail[~np.isnan(tail)])
                        tail = tail[-10:]
                        print('10 worst predictions: ', tail)

                        tf.reset_default_graph()
                    else:
                        print('invalid multiview_step given')
                        return
            make_results_file(final_result,evaluationfolder,DLCscorer)
            print("The network is evaluated and the results are stored in the subdirectory 'evaluation_results'.")
            print("If it generalizes well, choose the best model for prediction and update the config file with the appropriate index for the 'snapshotindex'.\nUse the function 'analyze_video' to make predictions on new videos.")
            print("Otherwise consider retraining the network (see DeepLabCut workflow Fig 2)")
    
    #returning to intial folder
    os.chdir(str(start_path))