Esempio n. 1
0
def convert_sequential_model(model,
                             num_dims=None,
                             mxts_mode=MxtsMode.DeepLIFT):
    converted_layers = []
    if (model.layers[0].input_shape is not None):
        input_shape = model.layers[0].input_shape[1:]
        num_dims_input = len(input_shape) + 1  #+1 for the batch axis
        assert num_dims is None or num_dims_input==num_dims,\
        "num_dims argument of "+str(num_dims)+" is incompatible with"\
        +" the number of dims in layers[0].input_shape which is: "\
        +str(model.layers[0].input_shape)
        num_dims = num_dims_input
    else:
        input_shape = None
    converted_layers.append(
        blobs.Input_FixedDefault(default=0.0,
                                 num_dims=num_dims,
                                 shape=input_shape,
                                 name="input"))
    for layer_idx, layer in enumerate(model.layers):
        conversion_function = layer_name_to_conversion_function[
            layer.get_config()[KerasKeys.name]]
        converted_layers.extend(
            conversion_function(layer=layer,
                                name=str(layer_idx),
                                mxts_mode=mxts_mode))
    connect_list_of_layers(converted_layers)
    converted_layers[-1].build_fwd_pass_vars()
    return models.SequentialModel(converted_layers)
Esempio n. 2
0
def convert_sequential_model(
    model_config,
    nonlinear_mxts_mode=\
     NonlinearMxtsMode.DeepLIFT_GenomicsDefault,
    verbose=True,
    dense_mxts_mode=DenseMxtsMode.Linear,
    conv_mxts_mode=ConvMxtsMode.Linear,
    maxpool_deeplift_mode=default_maxpool_deeplift_mode,
    layer_overrides={},
    custom_conversion_funcs={}):

    if (verbose):
        print("nonlinear_mxts_mode is set to: " + str(nonlinear_mxts_mode))
        sys.stdout.flush()

    converted_layers = []
    batch_input_shape = model_config[0]['config'][KerasKeys.batch_input_shape]
    converted_layers.append(
        layers.core.Input(batch_shape=batch_input_shape, name="input"))
    #converted_layers is actually mutated to be extended with the
    #additional layers so the assignment is not strictly necessary,
    #but whatever
    converted_layers = sequential_container_conversion(
        config=model_config,
        name="",
        verbose=verbose,
        nonlinear_mxts_mode=nonlinear_mxts_mode,
        dense_mxts_mode=dense_mxts_mode,
        conv_mxts_mode=conv_mxts_mode,
        maxpool_deeplift_mode=maxpool_deeplift_mode,
        converted_layers=converted_layers,
        layer_overrides=layer_overrides)
    converted_layers[-1].build_fwd_pass_vars()
    return models.SequentialModel(converted_layers)
Esempio n. 3
0
def convert_sequential_model(
        model,
        num_dims=None,
        nonlinear_mxts_mode=NonlinearMxtsMode.DeepLIFT,
        verbose=True,
        dense_mxts_mode=DenseMxtsMode.Linear,
        maxpool_deeplift_mode=default_maxpool_deeplift_mode):
    converted_layers = []
    if (model.layers[0].input_shape is not None):
        input_shape = model.layers[0].input_shape
        assert input_shape[0] is None  #batch axis
        num_dims_input = len(input_shape)
        assert num_dims is None or num_dims_input==num_dims,\
        "num_dims argument of "+str(num_dims)+" is incompatible with"\
        +" the number of dims in layers[0].input_shape which is: "\
        +str(model.layers[0].input_shape)
        num_dims = num_dims_input
    else:
        input_shape = None
    converted_layers.append(
        blobs.Input(num_dims=num_dims, shape=input_shape, name="input"))
    #converted_layers is actually mutated to be extended with the
    #additional layers so the assignment is not strictly necessary,
    #but whatever
    converted_layers = sequential_container_conversion(
        layer=model,
        name="",
        verbose=verbose,
        nonlinear_mxts_mode=nonlinear_mxts_mode,
        dense_mxts_mode=dense_mxts_mode,
        maxpool_deeplift_mode=maxpool_deeplift_mode,
        converted_layers=converted_layers)
    deeplift.util.connect_list_of_layers(converted_layers)
    converted_layers[-1].build_fwd_pass_vars()
    return models.SequentialModel(converted_layers)