Esempio n. 1
0
    def test_model(self):
        jfile = 'wfc.json'
        with open(jfile) as fp:
            jdata = json.load(fp)
        run_opt = RunOptions(None)
        systems = j_must_have(jdata, 'systems')
        set_pfx = j_must_have(jdata, 'set_prefix')
        batch_size = j_must_have(jdata, 'batch_size')
        test_size = j_must_have(jdata, 'numb_test')
        batch_size = 1
        test_size = 1
        stop_batch = j_must_have(jdata, 'stop_batch')
        rcut = j_must_have(jdata['model']['descriptor'], 'rcut')

        data = DataSystem(systems,
                          set_pfx,
                          batch_size,
                          test_size,
                          rcut,
                          run_opt=None)

        test_data = data.get_test()
        numb_test = 1

        descrpt = DescrptLocFrame(jdata['model']['descriptor'])
        fitting = WFCFitting(jdata['model']['fitting_net'], descrpt)
        model = WFCModel(jdata['model'], descrpt, fitting)

        input_data = {
            'coord': [test_data['coord']],
            'box': [test_data['box']],
            'type': [test_data['type']],
            'natoms_vec': [test_data['natoms_vec']],
            'default_mesh': [test_data['default_mesh']],
            'fparam': [test_data['fparam']],
        }
        model._compute_dstats(input_data)

        t_prop_c = tf.placeholder(tf.float32, [5], name='t_prop_c')
        t_energy = tf.placeholder(global_ener_float_precision, [None],
                                  name='t_energy')
        t_force = tf.placeholder(global_tf_float_precision, [None],
                                 name='t_force')
        t_virial = tf.placeholder(global_tf_float_precision, [None],
                                  name='t_virial')
        t_atom_ener = tf.placeholder(global_tf_float_precision, [None],
                                     name='t_atom_ener')
        t_coord = tf.placeholder(global_tf_float_precision, [None],
                                 name='i_coord')
        t_type = tf.placeholder(tf.int32, [None], name='i_type')
        t_natoms = tf.placeholder(tf.int32, [model.ntypes + 2],
                                  name='i_natoms')
        t_box = tf.placeholder(global_tf_float_precision, [None, 9],
                               name='i_box')
        t_mesh = tf.placeholder(tf.int32, [None], name='i_mesh')
        is_training = tf.placeholder(tf.bool)
        t_fparam = None

        model_pred \
            = model.build (t_coord,
                           t_type,
                           t_natoms,
                           t_box,
                           t_mesh,
                           t_fparam,
                           suffix = "wfc",
                           reuse = False)
        wfc = model_pred['wfc']

        feed_dict_test = {
            t_prop_c: test_data['prop_c'],
            t_coord: np.reshape(test_data['coord'][:numb_test, :], [-1]),
            t_box: test_data['box'][:numb_test, :],
            t_type: np.reshape(test_data['type'][:numb_test, :], [-1]),
            t_natoms: test_data['natoms_vec'],
            t_mesh: test_data['default_mesh'],
            is_training: False
        }

        sess = tf.Session()
        sess.run(tf.global_variables_initializer())
        [p] = sess.run([wfc], feed_dict=feed_dict_test)

        p = p.reshape([-1])
        refp = [
            -9.105016838228578990e-01, 7.196284362034099935e-01,
            -9.548516928185298014e-02, 2.764615027095288724e+00,
            2.661319598995644520e-01, 7.579512949131941846e-02,
            -2.107409067376114997e+00, -1.299080016614967414e-01,
            -5.962778584850070285e-01, 2.913899917663253514e-01,
            -1.226917174638697094e+00, 1.829523069930876655e+00,
            1.015704024959750873e+00, -1.792333611099589386e-01,
            5.032898080485321834e-01, 1.808561721292949453e-01,
            2.468863482075112081e+00, -2.566442546384765100e-01,
            -1.467453783795173994e-01, -1.822963931552128658e+00,
            5.843600156865462747e-01, -1.493875280832117403e+00,
            1.693322352814763398e-01, -1.877325443995481624e+00
        ]

        places = 6
        for ii in range(p.size):
            self.assertAlmostEqual(p[ii], refp[ii], places=places)
Esempio n. 2
0
    def test_model(self):
        jfile = 'water.json'
        with open(jfile) as fp:
            jdata = json.load(fp)
        run_opt = RunOptions(None)
        systems = j_must_have(jdata, 'systems')
        set_pfx = j_must_have(jdata, 'set_prefix')
        batch_size = j_must_have(jdata, 'batch_size')
        test_size = j_must_have(jdata, 'numb_test')
        batch_size = 1
        test_size = 1
        stop_batch = j_must_have(jdata, 'stop_batch')
        rcut = j_must_have(jdata['model']['descriptor'], 'rcut')

        data = DataSystem(systems,
                          set_pfx,
                          batch_size,
                          test_size,
                          rcut,
                          run_opt=None)

        test_data = data.get_test()
        numb_test = 1

        descrpt = DescrptLocFrame(jdata['model']['descriptor'])
        fitting = EnerFitting(jdata['model']['fitting_net'], descrpt)
        model = Model(jdata['model'], descrpt, fitting)

        # model._compute_dstats([test_data['coord']], [test_data['box']], [test_data['type']], [test_data['natoms_vec']], [test_data['default_mesh']])
        input_data = {
            'coord': [test_data['coord']],
            'box': [test_data['box']],
            'type': [test_data['type']],
            'natoms_vec': [test_data['natoms_vec']],
            'default_mesh': [test_data['default_mesh']]
        }
        model._compute_input_stat(input_data)
        model.fitting.bias_atom_e = data.compute_energy_shift()

        t_prop_c = tf.placeholder(tf.float32, [5], name='t_prop_c')
        t_energy = tf.placeholder(global_ener_float_precision, [None],
                                  name='t_energy')
        t_force = tf.placeholder(global_tf_float_precision, [None],
                                 name='t_force')
        t_virial = tf.placeholder(global_tf_float_precision, [None],
                                  name='t_virial')
        t_atom_ener = tf.placeholder(global_tf_float_precision, [None],
                                     name='t_atom_ener')
        t_coord = tf.placeholder(global_tf_float_precision, [None],
                                 name='i_coord')
        t_type = tf.placeholder(tf.int32, [None], name='i_type')
        t_natoms = tf.placeholder(tf.int32, [model.ntypes + 2],
                                  name='i_natoms')
        t_box = tf.placeholder(global_tf_float_precision, [None, 9],
                               name='i_box')
        t_mesh = tf.placeholder(tf.int32, [None], name='i_mesh')
        is_training = tf.placeholder(tf.bool)
        t_fparam = None

        model_pred \
            = model.build (t_coord,
                           t_type,
                           t_natoms,
                           t_box,
                           t_mesh,
                           t_fparam,
                           suffix = "loc_frame",
                           reuse = False)
        energy = model_pred['energy']
        force = model_pred['force']
        virial = model_pred['virial']
        atom_ener = model_pred['atom_ener']

        feed_dict_test = {
            t_prop_c: test_data['prop_c'],
            t_energy: test_data['energy'][:numb_test],
            t_force: np.reshape(test_data['force'][:numb_test, :], [-1]),
            t_virial: np.reshape(test_data['virial'][:numb_test, :], [-1]),
            t_atom_ener: np.reshape(test_data['atom_ener'][:numb_test, :],
                                    [-1]),
            t_coord: np.reshape(test_data['coord'][:numb_test, :], [-1]),
            t_box: test_data['box'][:numb_test, :],
            t_type: np.reshape(test_data['type'][:numb_test, :], [-1]),
            t_natoms: test_data['natoms_vec'],
            t_mesh: test_data['default_mesh'],
            is_training: False
        }

        sess = tf.Session()
        sess.run(tf.global_variables_initializer())
        [e, f, v] = sess.run([energy, force, virial], feed_dict=feed_dict_test)

        e = e.reshape([-1])
        f = f.reshape([-1])
        v = v.reshape([-1])
        refe = [1.165945032784766511e+01]
        reff = [
            2.356319331246305437e-01, 1.772322096063349284e-01,
            1.455439548950788684e-02, 1.968599426000810226e-01,
            2.648214484898352983e-01, 7.595232354012236564e-02,
            -2.121321856338151401e-01, -2.463886119018566037e-03,
            -2.075636300914874069e-02, -9.360310077571798101e-03,
            -1.751965198776750943e-01, -2.046405309983102827e-02,
            -1.990194093283037535e-01, -1.828347741191920298e-02,
            -6.916374506995154325e-02, -1.197997068502068031e-02,
            -2.461097746875573200e-01, 1.987744214930105627e-02
        ]
        refv = [
            -4.998509978510510265e-01, -1.966169437179327711e-02,
            1.136130543869883977e-02, -1.966169437179334650e-02,
            -4.575353297894450555e-01, -2.668666556859019493e-03,
            1.136130543869887100e-02, -2.668666556859039876e-03,
            2.455466940358383508e-03
        ]
        refe = np.reshape(refe, [-1])
        reff = np.reshape(reff, [-1])
        refv = np.reshape(refv, [-1])

        places = 10
        for ii in range(e.size):
            self.assertAlmostEqual(e[ii], refe[ii], places=places)
        for ii in range(f.size):
            self.assertAlmostEqual(f[ii], reff[ii], places=places)
        for ii in range(v.size):
            self.assertAlmostEqual(v[ii], refv[ii], places=places)
Esempio n. 3
0
    def _init_param(self, jdata):
        # model config
        model_param = j_must_have(jdata, 'model')
        descrpt_param = j_must_have(model_param, 'descriptor')
        fitting_param = j_must_have(model_param, 'fitting_net')

        # descriptor
        descrpt_type = j_must_have(descrpt_param, 'type')
        if descrpt_type == 'loc_frame':
            self.descrpt = DescrptLocFrame(descrpt_param)
        elif descrpt_type == 'se_a':
            self.descrpt = DescrptSeA(descrpt_param)
        elif descrpt_type == 'se_r':
            self.descrpt = DescrptSeR(descrpt_param)
        elif descrpt_type == 'se_ar':
            self.descrpt = DescrptSeAR(descrpt_param)
        else:
            raise RuntimeError('unknow model type ' + descrpt_type)

        # fitting net
        try:
            fitting_type = fitting_param['type']
        except:
            fitting_type = 'ener'
        if fitting_type == 'ener':
            self.fitting = EnerFitting(fitting_param, self.descrpt)
        elif fitting_type == 'wfc':
            self.fitting = WFCFitting(fitting_param, self.descrpt)
        elif fitting_type == 'dipole':
            if descrpt_type == 'se_a':
                self.fitting = DipoleFittingSeA(fitting_param, self.descrpt)
            else:
                raise RuntimeError(
                    'fitting dipole only supports descrptors: se_a')
        elif fitting_type == 'polar':
            if descrpt_type == 'loc_frame':
                self.fitting = PolarFittingLocFrame(fitting_param,
                                                    self.descrpt)
            elif descrpt_type == 'se_a':
                self.fitting = PolarFittingSeA(fitting_param, self.descrpt)
            else:
                raise RuntimeError(
                    'fitting polar only supports descrptors: loc_frame and se_a'
                )
        elif fitting_type == 'global_polar':
            if descrpt_type == 'se_a':
                self.fitting = GlobalPolarFittingSeA(fitting_param,
                                                     self.descrpt)
            else:
                raise RuntimeError(
                    'fitting global_polar only supports descrptors: loc_frame and se_a'
                )
        else:
            raise RuntimeError('unknow fitting type ' + fitting_type)

        # init model
        # infer model type by fitting_type
        if fitting_type == Model.model_type:
            self.model = Model(model_param, self.descrpt, self.fitting)
        elif fitting_type == 'wfc':
            self.model = WFCModel(model_param, self.descrpt, self.fitting)
        elif fitting_type == 'dipole':
            self.model = DipoleModel(model_param, self.descrpt, self.fitting)
        elif fitting_type == 'polar':
            self.model = PolarModel(model_param, self.descrpt, self.fitting)
        elif fitting_type == 'global_polar':
            self.model = GlobalPolarModel(model_param, self.descrpt,
                                          self.fitting)
        else:
            raise RuntimeError('get unknown fitting type when building model')

        # learning rate
        lr_param = j_must_have(jdata, 'learning_rate')
        try:
            lr_type = lr_param['type']
        except:
            lr_type = 'exp'
        if lr_type == 'exp':
            self.lr = LearningRateExp(lr_param)
        else:
            raise RuntimeError('unknown learning_rate type ' + lr_type)

        # loss
        # infer loss type by fitting_type
        try:
            loss_param = jdata['loss']
            loss_type = loss_param.get('type', 'std')
        except:
            loss_param = None
            loss_type = 'std'

        if fitting_type == 'ener':
            if loss_type == 'std':
                self.loss = EnerStdLoss(
                    loss_param, starter_learning_rate=self.lr.start_lr())
            elif loss_type == 'ener_dipole':
                self.loss = EnerDipoleLoss(
                    loss_param, starter_learning_rate=self.lr.start_lr())
            else:
                raise RuntimeError('unknow loss type')
        elif fitting_type == 'wfc':
            self.loss = TensorLoss(loss_param,
                                   model=self.model,
                                   tensor_name='wfc',
                                   tensor_size=self.model.get_out_size(),
                                   label_name='wfc')
        elif fitting_type == 'dipole':
            self.loss = TensorLoss(loss_param,
                                   model=self.model,
                                   tensor_name='dipole',
                                   tensor_size=3,
                                   label_name='dipole')
        elif fitting_type == 'polar':
            self.loss = TensorLoss(loss_param,
                                   model=self.model,
                                   tensor_name='polar',
                                   tensor_size=9,
                                   label_name='polarizability')
        elif fitting_type == 'global_polar':
            self.loss = TensorLoss(loss_param,
                                   model=self.model,
                                   tensor_name='global_polar',
                                   tensor_size=9,
                                   atomic=False,
                                   label_name='polarizability')
        else:
            raise RuntimeError(
                'get unknown fitting type when building loss function')

        # training
        training_param = j_must_have(jdata, 'training')

        tr_args = ClassArg()\
                  .add('numb_test',     int,    default = 1)\
                  .add('disp_file',     str,    default = 'lcurve.out')\
                  .add('disp_freq',     int,    default = 100)\
                  .add('save_freq',     int,    default = 1000)\
                  .add('save_ckpt',     str,    default = 'model.ckpt')\
                  .add('display_in_training', bool, default = True)\
                  .add('timing_in_training',  bool, default = True)\
                  .add('profiling',     bool,   default = False)\
                  .add('profiling_file',str,    default = 'timeline.json')\
                  .add('sys_probs',   list    )\
                  .add('auto_prob_style', str, default = "prob_sys_size")
        tr_data = tr_args.parse(training_param)
        self.numb_test = tr_data['numb_test']
        self.disp_file = tr_data['disp_file']
        self.disp_freq = tr_data['disp_freq']
        self.save_freq = tr_data['save_freq']
        self.save_ckpt = tr_data['save_ckpt']
        self.display_in_training = tr_data['display_in_training']
        self.timing_in_training = tr_data['timing_in_training']
        self.profiling = tr_data['profiling']
        self.profiling_file = tr_data['profiling_file']
        self.sys_probs = tr_data['sys_probs']
        self.auto_prob_style = tr_data['auto_prob_style']
        self.useBN = False
        if fitting_type == 'ener' and self.fitting.get_numb_fparam() > 0:
            self.numb_fparam = self.fitting.get_numb_fparam()
        else:
            self.numb_fparam = 0