def enable_compression( self, min_nbor_dist: float, model_file: str = 'frozon_model.pb', table_extrapolate: float = 5, table_stride_1: float = 0.01, table_stride_2: float = 0.1, check_frequency: int = -1, suffix: str = "", ) -> None: """ Reveive the statisitcs (distance, max_nbor_size and env_mat_range) of the training data. Parameters ---------- min_nbor_dist The nearest distance between atoms model_file The original frozen model, which will be compressed by the program table_extrapolate The scale of model extrapolation table_stride_1 The uniform stride of the first table table_stride_2 The uniform stride of the second table check_frequency The overflow check frequency suffix : str, optional The suffix of the scope """ assert ( not self.filter_resnet_dt ), "Model compression error: descriptor resnet_dt must be false!" self.compress = True self.table = DPTabulate(model_file, self.type_one_side, self.exclude_types, self.compress_activation_fn, suffix=suffix) self.table_config = [ table_extrapolate, table_stride_1, table_stride_2, check_frequency ] self.lower, self.upper \ = self.table.build(min_nbor_dist, table_extrapolate, table_stride_1, table_stride_2) graph, _ = load_graph_def(model_file) self.davg = get_tensor_by_name_from_graph( graph, 'descrpt_attr%s/t_avg' % suffix) self.dstd = get_tensor_by_name_from_graph( graph, 'descrpt_attr%s/t_std' % suffix)
def enable_compression( self, min_nbor_dist: float, model_file: str = 'frozon_model.pb', table_extrapolate: float = 5, table_stride_1: float = 0.01, table_stride_2: float = 0.1, check_frequency: int = -1, suffix: str = "", ) -> None: """ Reveive the statisitcs (distance, max_nbor_size and env_mat_range) of the training data. Parameters ---------- min_nbor_dist The nearest distance between atoms model_file The original frozen model, which will be compressed by the program table_extrapolate The scale of model extrapolation table_stride_1 The uniform stride of the first table table_stride_2 The uniform stride of the second table check_frequency The overflow check frequency suffix : str, optional The suffix of the scope """ # do some checks before the mocel compression process assert ( not self.filter_resnet_dt ), "Model compression error: descriptor resnet_dt must be false!" for tt in self.exclude_types: if (tt[0] not in range(self.ntypes)) or (tt[1] not in range( self.ntypes)): raise RuntimeError("exclude types" + str(tt) + " must within the number of atomic types " + str(self.ntypes) + "!") if (self.ntypes * self.ntypes - len(self.exclude_types) == 0): raise RuntimeError( "empty embedding-net are not supported in model compression!") for ii in range(len(self.filter_neuron) - 1): if self.filter_neuron[ii] * 2 != self.filter_neuron[ii + 1]: raise NotImplementedError( "Model Compression error: descriptor neuron [%s] is not supported by model compression! " "The size of the next layer of the neural network must be twice the size of the previous layer." % ','.join([str(item) for item in self.filter_neuron])) self.compress = True self.table = DPTabulate(self, self.filter_neuron, model_file, self.type_one_side, self.exclude_types, self.compress_activation_fn, suffix=suffix) self.table_config = [ table_extrapolate, table_stride_1, table_stride_2, check_frequency ] self.lower, self.upper \ = self.table.build(min_nbor_dist, table_extrapolate, table_stride_1, table_stride_2) graph, _ = load_graph_def(model_file) self.davg = get_tensor_by_name_from_graph( graph, 'descrpt_attr%s/t_avg' % suffix) self.dstd = get_tensor_by_name_from_graph( graph, 'descrpt_attr%s/t_std' % suffix)
class DescrptSeA(DescrptSe): r"""DeepPot-SE constructed from all information (both angular and radial) of atomic configurations. The embedding takes the distance between atoms as input. The descriptor :math:`\mathcal{D}^i \in \mathcal{R}^{M_1 \times M_2}` is given by [1]_ .. math:: \mathcal{D}^i = (\mathcal{G}^i)^T \mathcal{R}^i (\mathcal{R}^i)^T \mathcal{G}^i_< where :math:`\mathcal{R}^i \in \mathbb{R}^{N \times 4}` is the coordinate matrix, and each row of :math:`\mathcal{R}^i` can be constructed as follows .. math:: (\mathcal{R}^i)_j = [ \begin{array}{c} s(r_{ji}) & \frac{s(r_{ji})x_{ji}}{r_{ji}} & \frac{s(r_{ji})y_{ji}}{r_{ji}} & \frac{s(r_{ji})z_{ji}}{r_{ji}} \end{array} ] where :math:`\mathbf{R}_{ji}=\mathbf{R}_j-\mathbf{R}_i = (x_{ji}, y_{ji}, z_{ji})` is the relative coordinate and :math:`r_{ji}=\lVert \mathbf{R}_{ji} \lVert` is its norm. The switching function :math:`s(r)` is defined as: .. math:: s(r)= \begin{cases} \frac{1}{r}, & r<r_s \\ \frac{1}{r} \{ {(\frac{r - r_s}{ r_c - r_s})}^3 (-6 {(\frac{r - r_s}{ r_c - r_s})}^2 +15 \frac{r - r_s}{ r_c - r_s} -10) +1 \}, & r_s \leq r<r_c \\ 0, & r \geq r_c \end{cases} Each row of the embedding matrix :math:`\mathcal{G}^i \in \mathbb{R}^{N \times M_1}` consists of outputs of a embedding network :math:`\mathcal{N}` of :math:`s(r_{ji})`: .. math:: (\mathcal{G}^i)_j = \mathcal{N}(s(r_{ji})) :math:`\mathcal{G}^i_< \in \mathbb{R}^{N \times M_2}` takes first :math:`M_2`$` columns of :math:`\mathcal{G}^i`$`. The equation of embedding network :math:`\mathcal{N}` can be found at :meth:`deepmd.utils.network.embedding_net`. Parameters ---------- rcut The cut-off radius :math:`r_c` rcut_smth From where the environment matrix should be smoothed :math:`r_s` sel : list[str] sel[i] specifies the maxmum number of type i atoms in the cut-off radius neuron : list[int] Number of neurons in each hidden layers of the embedding net :math:`\mathcal{N}` axis_neuron Number of the axis neuron :math:`M_2` (number of columns of the sub-matrix of the embedding matrix) resnet_dt Time-step `dt` in the resnet construction: y = x + dt * \phi (Wx + b) trainable If the weights of embedding net are trainable. seed Random seed for initializing the network parameters. type_one_side Try to build N_types embedding nets. Otherwise, building N_types^2 embedding nets exclude_types : List[List[int]] The excluded pairs of types which have no interaction with each other. For example, `[[0, 1]]` means no interaction between type 0 and type 1. set_davg_zero Set the shift of embedding net input to zero. activation_function The activation function in the embedding net. Supported options are {0} precision The precision of the embedding net parameters. Supported options are {1} uniform_seed Only for the purpose of backward compatibility, retrieves the old behavior of using the random seed References ---------- .. [1] Linfeng Zhang, Jiequn Han, Han Wang, Wissam A. Saidi, Roberto Car, and E. Weinan. 2018. End-to-end symmetry preserving inter-atomic potential energy model for finite and extended systems. In Proceedings of the 32nd International Conference on Neural Information Processing Systems (NIPS'18). Curran Associates Inc., Red Hook, NY, USA, 4441–4451. """ @docstring_parameter(list_to_doc(ACTIVATION_FN_DICT.keys()), list_to_doc(PRECISION_DICT.keys())) def __init__(self, rcut: float, rcut_smth: float, sel: List[str], neuron: List[int] = [24, 48, 96], axis_neuron: int = 8, resnet_dt: bool = False, trainable: bool = True, seed: int = None, type_one_side: bool = True, exclude_types: List[List[int]] = [], set_davg_zero: bool = False, activation_function: str = 'tanh', precision: str = 'default', uniform_seed: bool = False) -> None: """ Constructor """ if rcut < rcut_smth: raise RuntimeError( "rcut_smth (%f) should be no more than rcut (%f)!" % (rcut_smth, rcut)) self.sel_a = sel self.rcut_r = rcut self.rcut_r_smth = rcut_smth self.filter_neuron = neuron self.n_axis_neuron = axis_neuron self.filter_resnet_dt = resnet_dt self.seed = seed self.uniform_seed = uniform_seed self.seed_shift = embedding_net_rand_seed_shift(self.filter_neuron) self.trainable = trainable self.compress_activation_fn = get_activation_func(activation_function) self.filter_activation_fn = get_activation_func(activation_function) self.filter_precision = get_precision(precision) self.exclude_types = set() for tt in exclude_types: assert (len(tt) == 2) self.exclude_types.add((tt[0], tt[1])) self.exclude_types.add((tt[1], tt[0])) self.set_davg_zero = set_davg_zero self.type_one_side = type_one_side # descrpt config self.sel_r = [0 for ii in range(len(self.sel_a))] self.ntypes = len(self.sel_a) assert (self.ntypes == len(self.sel_r)) self.rcut_a = -1 # numb of neighbors and numb of descrptors self.nnei_a = np.cumsum(self.sel_a)[-1] self.nnei_r = np.cumsum(self.sel_r)[-1] self.nnei = self.nnei_a + self.nnei_r self.ndescrpt_a = self.nnei_a * 4 self.ndescrpt_r = self.nnei_r * 1 self.ndescrpt = self.ndescrpt_a + self.ndescrpt_r self.useBN = False self.dstd = None self.davg = None self.compress = False self.embedding_net_variables = None self.mixed_prec = None self.place_holders = {} nei_type = np.array([]) for ii in range(self.ntypes): nei_type = np.append(nei_type, ii * np.ones(self.sel_a[ii])) # like a mask self.nei_type = tf.constant(nei_type, dtype=tf.int32) avg_zero = np.zeros([self.ntypes, self.ndescrpt]).astype(GLOBAL_NP_FLOAT_PRECISION) std_ones = np.ones([self.ntypes, self.ndescrpt]).astype(GLOBAL_NP_FLOAT_PRECISION) sub_graph = tf.Graph() with sub_graph.as_default(): name_pfx = 'd_sea_' for ii in ['coord', 'box']: self.place_holders[ii] = tf.placeholder( GLOBAL_NP_FLOAT_PRECISION, [None, None], name=name_pfx + 't_' + ii) self.place_holders['type'] = tf.placeholder(tf.int32, [None, None], name=name_pfx + 't_type') self.place_holders['natoms_vec'] = tf.placeholder( tf.int32, [self.ntypes + 2], name=name_pfx + 't_natoms') self.place_holders['default_mesh'] = tf.placeholder( tf.int32, [None], name=name_pfx + 't_mesh') self.stat_descrpt, descrpt_deriv, rij, nlist \ = op_module.prod_env_mat_a(self.place_holders['coord'], self.place_holders['type'], self.place_holders['natoms_vec'], self.place_holders['box'], self.place_holders['default_mesh'], tf.constant(avg_zero), tf.constant(std_ones), rcut_a = self.rcut_a, rcut_r = self.rcut_r, rcut_r_smth = self.rcut_r_smth, sel_a = self.sel_a, sel_r = self.sel_r) self.sub_sess = tf.Session(graph=sub_graph, config=default_tf_session_config) self.original_sel = None def get_rcut(self) -> float: """ Returns the cut-off radius """ return self.rcut_r def get_ntypes(self) -> int: """ Returns the number of atom types """ return self.ntypes def get_dim_out(self) -> int: """ Returns the output dimension of this descriptor """ return self.filter_neuron[-1] * self.n_axis_neuron def get_dim_rot_mat_1(self) -> int: """ Returns the first dimension of the rotation matrix. The rotation is of shape dim_1 x 3 """ return self.filter_neuron[-1] def get_nlist(self) -> Tuple[tf.Tensor, tf.Tensor, List[int], List[int]]: """ Returns ------- nlist Neighbor list rij The relative distance between the neighbor and the center atom. sel_a The number of neighbors with full information sel_r The number of neighbors with only radial information """ return self.nlist, self.rij, self.sel_a, self.sel_r def compute_input_stats(self, data_coord: list, data_box: list, data_atype: list, natoms_vec: list, mesh: list, input_dict: dict) -> None: """ Compute the statisitcs (avg and std) of the training data. The input will be normalized by the statistics. Parameters ---------- data_coord The coordinates. Can be generated by deepmd.model.make_stat_input data_box The box. Can be generated by deepmd.model.make_stat_input data_atype The atom types. Can be generated by deepmd.model.make_stat_input natoms_vec The vector for the number of atoms of the system and different types of atoms. Can be generated by deepmd.model.make_stat_input mesh The mesh for neighbor searching. Can be generated by deepmd.model.make_stat_input input_dict Dictionary for additional input """ all_davg = [] all_dstd = [] if True: sumr = [] suma = [] sumn = [] sumr2 = [] suma2 = [] for cc, bb, tt, nn, mm in zip(data_coord, data_box, data_atype, natoms_vec, mesh): sysr,sysr2,sysa,sysa2,sysn \ = self._compute_dstats_sys_smth(cc,bb,tt,nn,mm) sumr.append(sysr) suma.append(sysa) sumn.append(sysn) sumr2.append(sysr2) suma2.append(sysa2) sumr = np.sum(sumr, axis=0) suma = np.sum(suma, axis=0) sumn = np.sum(sumn, axis=0) sumr2 = np.sum(sumr2, axis=0) suma2 = np.sum(suma2, axis=0) for type_i in range(self.ntypes): davgunit = [sumr[type_i] / (sumn[type_i] + 1e-15), 0, 0, 0] dstdunit = [ self._compute_std(sumr2[type_i], sumr[type_i], sumn[type_i]), self._compute_std(suma2[type_i], suma[type_i], sumn[type_i]), self._compute_std(suma2[type_i], suma[type_i], sumn[type_i]), self._compute_std(suma2[type_i], suma[type_i], sumn[type_i]) ] davg = np.tile(davgunit, self.ndescrpt // 4) dstd = np.tile(dstdunit, self.ndescrpt // 4) all_davg.append(davg) all_dstd.append(dstd) if not self.set_davg_zero: self.davg = np.array(all_davg) self.dstd = np.array(all_dstd) def enable_compression( self, min_nbor_dist: float, model_file: str = 'frozon_model.pb', table_extrapolate: float = 5, table_stride_1: float = 0.01, table_stride_2: float = 0.1, check_frequency: int = -1, suffix: str = "", ) -> None: """ Reveive the statisitcs (distance, max_nbor_size and env_mat_range) of the training data. Parameters ---------- min_nbor_dist The nearest distance between atoms model_file The original frozen model, which will be compressed by the program table_extrapolate The scale of model extrapolation table_stride_1 The uniform stride of the first table table_stride_2 The uniform stride of the second table check_frequency The overflow check frequency suffix : str, optional The suffix of the scope """ # do some checks before the mocel compression process assert ( not self.filter_resnet_dt ), "Model compression error: descriptor resnet_dt must be false!" for tt in self.exclude_types: if (tt[0] not in range(self.ntypes)) or (tt[1] not in range( self.ntypes)): raise RuntimeError("exclude types" + str(tt) + " must within the number of atomic types " + str(self.ntypes) + "!") if (self.ntypes * self.ntypes - len(self.exclude_types) == 0): raise RuntimeError( "empty embedding-net are not supported in model compression!") for ii in range(len(self.filter_neuron) - 1): if self.filter_neuron[ii] * 2 != self.filter_neuron[ii + 1]: raise NotImplementedError( "Model Compression error: descriptor neuron [%s] is not supported by model compression! " "The size of the next layer of the neural network must be twice the size of the previous layer." % ','.join([str(item) for item in self.filter_neuron])) self.compress = True self.table = DPTabulate(self, self.filter_neuron, model_file, self.type_one_side, self.exclude_types, self.compress_activation_fn, suffix=suffix) self.table_config = [ table_extrapolate, table_stride_1, table_stride_2, check_frequency ] self.lower, self.upper \ = self.table.build(min_nbor_dist, table_extrapolate, table_stride_1, table_stride_2) graph, _ = load_graph_def(model_file) self.davg = get_tensor_by_name_from_graph( graph, 'descrpt_attr%s/t_avg' % suffix) self.dstd = get_tensor_by_name_from_graph( graph, 'descrpt_attr%s/t_std' % suffix) def enable_mixed_precision(self, mixed_prec: dict = None) -> None: """ Reveive the mixed precision setting. Parameters ---------- mixed_prec The mixed precision setting used in the embedding net """ self.mixed_prec = mixed_prec self.filter_precision = get_precision(mixed_prec['output_prec']) def build(self, coord_: tf.Tensor, atype_: tf.Tensor, natoms: tf.Tensor, box_: tf.Tensor, mesh: tf.Tensor, input_dict: dict, reuse: bool = None, suffix: str = '') -> tf.Tensor: """ Build the computational graph for the descriptor Parameters ---------- coord_ The coordinate of atoms atype_ The type of atoms natoms The number of atoms. This tensor has the length of Ntypes + 2 natoms[0]: number of local atoms natoms[1]: total number of atoms held by this processor natoms[i]: 2 <= i < Ntypes+2, number of type i atoms mesh For historical reasons, only the length of the Tensor matters. if size of mesh == 6, pbc is assumed. if size of mesh == 0, no-pbc is assumed. input_dict Dictionary for additional inputs reuse The weights in the networks should be reused when get the variable. suffix Name suffix to identify this descriptor Returns ------- descriptor The output descriptor """ davg = self.davg dstd = self.dstd with tf.variable_scope('descrpt_attr' + suffix, reuse=reuse): if davg is None: davg = np.zeros([self.ntypes, self.ndescrpt]) if dstd is None: dstd = np.ones([self.ntypes, self.ndescrpt]) t_rcut = tf.constant(np.max([self.rcut_r, self.rcut_a]), name='rcut', dtype=GLOBAL_TF_FLOAT_PRECISION) t_ntypes = tf.constant(self.ntypes, name='ntypes', dtype=tf.int32) t_ndescrpt = tf.constant(self.ndescrpt, name='ndescrpt', dtype=tf.int32) t_sel = tf.constant(self.sel_a, name='sel', dtype=tf.int32) t_original_sel = tf.constant(self.original_sel if self.original_sel is not None else self.sel_a, name='original_sel', dtype=tf.int32) self.t_avg = tf.get_variable( 't_avg', davg.shape, dtype=GLOBAL_TF_FLOAT_PRECISION, trainable=False, initializer=tf.constant_initializer(davg)) self.t_std = tf.get_variable( 't_std', dstd.shape, dtype=GLOBAL_TF_FLOAT_PRECISION, trainable=False, initializer=tf.constant_initializer(dstd)) with tf.control_dependencies([t_sel, t_original_sel]): coord = tf.reshape(coord_, [-1, natoms[1] * 3]) box = tf.reshape(box_, [-1, 9]) atype = tf.reshape(atype_, [-1, natoms[1]]) self.descrpt, self.descrpt_deriv, self.rij, self.nlist \ = op_module.prod_env_mat_a (coord, atype, natoms, box, mesh, self.t_avg, self.t_std, rcut_a = self.rcut_a, rcut_r = self.rcut_r, rcut_r_smth = self.rcut_r_smth, sel_a = self.sel_a, sel_r = self.sel_r) # only used when tensorboard was set as true tf.summary.histogram('descrpt', self.descrpt) tf.summary.histogram('rij', self.rij) tf.summary.histogram('nlist', self.nlist) self.descrpt_reshape = tf.reshape(self.descrpt, [-1, self.ndescrpt]) self._identity_tensors(suffix=suffix) self.dout, self.qmat = self._pass_filter(self.descrpt_reshape, atype, natoms, input_dict, suffix=suffix, reuse=reuse, trainable=self.trainable) # only used when tensorboard was set as true tf.summary.histogram('embedding_net_output', self.dout) return self.dout def get_rot_mat(self) -> tf.Tensor: """ Get rotational matrix """ return self.qmat def prod_force_virial( self, atom_ener: tf.Tensor, natoms: tf.Tensor) -> Tuple[tf.Tensor, tf.Tensor, tf.Tensor]: """ Compute force and virial Parameters ---------- atom_ener The atomic energy natoms The number of atoms. This tensor has the length of Ntypes + 2 natoms[0]: number of local atoms natoms[1]: total number of atoms held by this processor natoms[i]: 2 <= i < Ntypes+2, number of type i atoms Returns ------- force The force on atoms virial The total virial atom_virial The atomic virial """ [net_deriv] = tf.gradients(atom_ener, self.descrpt_reshape) tf.summary.histogram('net_derivative', net_deriv) net_deriv_reshape = tf.reshape(net_deriv, [-1, natoms[0] * self.ndescrpt]) force \ = op_module.prod_force_se_a (net_deriv_reshape, self.descrpt_deriv, self.nlist, natoms, n_a_sel = self.nnei_a, n_r_sel = self.nnei_r) virial, atom_virial \ = op_module.prod_virial_se_a (net_deriv_reshape, self.descrpt_deriv, self.rij, self.nlist, natoms, n_a_sel = self.nnei_a, n_r_sel = self.nnei_r) tf.summary.histogram('force', force) tf.summary.histogram('virial', virial) tf.summary.histogram('atom_virial', atom_virial) return force, virial, atom_virial def _pass_filter(self, inputs, atype, natoms, input_dict, reuse=None, suffix='', trainable=True): if input_dict is not None: type_embedding = input_dict.get('type_embedding', None) else: type_embedding = None start_index = 0 inputs = tf.reshape(inputs, [-1, self.ndescrpt * natoms[0]]) output = [] output_qmat = [] if not (self.type_one_side and len(self.exclude_types) == 0) and type_embedding is None: for type_i in range(self.ntypes): inputs_i = tf.slice(inputs, [0, start_index * self.ndescrpt], [-1, natoms[2 + type_i] * self.ndescrpt]) inputs_i = tf.reshape(inputs_i, [-1, self.ndescrpt]) if self.type_one_side: # reuse NN parameters for all types to support type_one_side along with exclude_types reuse = tf.AUTO_REUSE filter_name = 'filter_type_all' + suffix else: filter_name = 'filter_type_' + str(type_i) + suffix layer, qmat = self._filter( inputs_i, type_i, name=filter_name, natoms=natoms, reuse=reuse, trainable=trainable, activation_fn=self.filter_activation_fn) layer = tf.reshape(layer, [ tf.shape(inputs)[0], natoms[2 + type_i] * self.get_dim_out() ]) qmat = tf.reshape(qmat, [ tf.shape(inputs)[0], natoms[2 + type_i] * self.get_dim_rot_mat_1() * 3 ]) output.append(layer) output_qmat.append(qmat) start_index += natoms[2 + type_i] else: inputs_i = inputs inputs_i = tf.reshape(inputs_i, [-1, self.ndescrpt]) type_i = -1 layer, qmat = self._filter(inputs_i, type_i, name='filter_type_all' + suffix, natoms=natoms, reuse=reuse, trainable=trainable, activation_fn=self.filter_activation_fn, type_embedding=type_embedding) layer = tf.reshape( layer, [tf.shape(inputs)[0], natoms[0] * self.get_dim_out()]) qmat = tf.reshape(qmat, [ tf.shape(inputs)[0], natoms[0] * self.get_dim_rot_mat_1() * 3 ]) output.append(layer) output_qmat.append(qmat) output = tf.concat(output, axis=1) output_qmat = tf.concat(output_qmat, axis=1) return output, output_qmat def _compute_dstats_sys_smth(self, data_coord, data_box, data_atype, natoms_vec, mesh): dd_all \ = run_sess(self.sub_sess, self.stat_descrpt, feed_dict = { self.place_holders['coord']: data_coord, self.place_holders['type']: data_atype, self.place_holders['natoms_vec']: natoms_vec, self.place_holders['box']: data_box, self.place_holders['default_mesh']: mesh, }) natoms = natoms_vec dd_all = np.reshape(dd_all, [-1, self.ndescrpt * natoms[0]]) start_index = 0 sysr = [] sysa = [] sysn = [] sysr2 = [] sysa2 = [] for type_i in range(self.ntypes): end_index = start_index + self.ndescrpt * natoms[2 + type_i] dd = dd_all[:, start_index:end_index] dd = np.reshape(dd, [-1, self.ndescrpt]) start_index = end_index # compute dd = np.reshape(dd, [-1, 4]) ddr = dd[:, :1] dda = dd[:, 1:] sumr = np.sum(ddr) suma = np.sum(dda) / 3. sumn = dd.shape[0] sumr2 = np.sum(np.multiply(ddr, ddr)) suma2 = np.sum(np.multiply(dda, dda)) / 3. sysr.append(sumr) sysa.append(suma) sysn.append(sumn) sysr2.append(sumr2) sysa2.append(suma2) return sysr, sysr2, sysa, sysa2, sysn def _compute_std(self, sumv2, sumv, sumn): if sumn == 0: return 1e-2 val = np.sqrt(sumv2 / sumn - np.multiply(sumv / sumn, sumv / sumn)) if np.abs(val) < 1e-2: val = 1e-2 return val def _concat_type_embedding( self, xyz_scatter, nframes, natoms, type_embedding, ): '''Concatenate `type_embedding` of neighbors and `xyz_scatter`. If not self.type_one_side, concatenate `type_embedding` of center atoms as well. Parameters ---------- xyz_scatter: shape is [nframes*natoms[0]*self.nnei, 1] nframes: shape is [] natoms: shape is [1+1+self.ntypes] type_embedding: shape is [self.ntypes, Y] where Y=jdata['type_embedding']['neuron'][-1] Returns ------- embedding: environment of each atom represented by embedding. ''' te_out_dim = type_embedding.get_shape().as_list()[-1] nei_embed = tf.nn.embedding_lookup( type_embedding, tf.cast(self.nei_type, dtype=tf.int32)) # shape is [self.nnei, 1+te_out_dim] nei_embed = tf.tile( nei_embed, (nframes * natoms[0], 1)) # shape is [nframes*natoms[0]*self.nnei, te_out_dim] nei_embed = tf.reshape(nei_embed, [-1, te_out_dim]) embedding_input = tf.concat( [xyz_scatter, nei_embed], 1) # shape is [nframes*natoms[0]*self.nnei, 1+te_out_dim] if not self.type_one_side: atm_embed = embed_atom_type( self.ntypes, natoms, type_embedding) # shape is [natoms[0], te_out_dim] atm_embed = tf.tile( atm_embed, (nframes, self.nnei )) # shape is [nframes*natoms[0], self.nnei*te_out_dim] atm_embed = tf.reshape( atm_embed, [-1, te_out_dim ]) # shape is [nframes*natoms[0]*self.nnei, te_out_dim] embedding_input = tf.concat( [embedding_input, atm_embed], 1 ) # shape is [nframes*natoms[0]*self.nnei, 1+te_out_dim+te_out_dim] return embedding_input def _filter_lower( self, type_i, type_input, start_index, incrs_index, inputs, nframes, natoms, type_embedding=None, is_exclude=False, activation_fn=None, bavg=0.0, stddev=1.0, trainable=True, suffix='', ): """ input env matrix, returns R.G """ outputs_size = [1] + self.filter_neuron # cut-out inputs # with natom x (nei_type_i x 4) inputs_i = tf.slice(inputs, [0, start_index * 4], [-1, incrs_index * 4]) shape_i = inputs_i.get_shape().as_list() natom = tf.shape(inputs_i)[0] # with (natom x nei_type_i) x 4 inputs_reshape = tf.reshape(inputs_i, [-1, 4]) # with (natom x nei_type_i) x 1 xyz_scatter = tf.reshape(tf.slice(inputs_reshape, [0, 0], [-1, 1]), [-1, 1]) if type_embedding is not None: xyz_scatter = self._concat_type_embedding(xyz_scatter, nframes, natoms, type_embedding) if self.compress: raise RuntimeError( 'compression of type embedded descriptor is not supported at the moment' ) # natom x 4 x outputs_size if self.compress and (not is_exclude): info = [ self.lower, self.upper, self.upper * self.table_config[0], self.table_config[1], self.table_config[2], self.table_config[3] ] if self.type_one_side: net = 'filter_-1_net_' + str(type_i) else: net = 'filter_' + str(type_input) + '_net_' + str(type_i) return op_module.tabulate_fusion_se_a( tf.cast(self.table.data[net], self.filter_precision), info, xyz_scatter, tf.reshape(inputs_i, [natom, shape_i[1] // 4, 4]), last_layer_size=outputs_size[-1]) else: if (not is_exclude): # with (natom x nei_type_i) x out_size xyz_scatter = embedding_net( xyz_scatter, self.filter_neuron, self.filter_precision, activation_fn=activation_fn, resnet_dt=self.filter_resnet_dt, name_suffix=suffix, stddev=stddev, bavg=bavg, seed=self.seed, trainable=trainable, uniform_seed=self.uniform_seed, initial_variables=self.embedding_net_variables, mixed_prec=self.mixed_prec) if (not self.uniform_seed) and (self.seed is not None): self.seed += self.seed_shift else: # we can safely return the final xyz_scatter filled with zero directly return tf.cast(tf.fill((natom, 4, outputs_size[-1]), 0.), self.filter_precision) # natom x nei_type_i x out_size xyz_scatter = tf.reshape(xyz_scatter, (-1, shape_i[1] // 4, outputs_size[-1])) # When using tf.reshape(inputs_i, [-1, shape_i[1]//4, 4]) below # [588 24] -> [588 6 4] correct # but if sel is zero # [588 0] -> [147 0 4] incorrect; the correct one is [588 0 4] # So we need to explicitly assign the shape to tf.shape(inputs_i)[0] instead of -1 # natom x 4 x outputs_size return tf.matmul(tf.reshape(inputs_i, [natom, shape_i[1] // 4, 4]), xyz_scatter, transpose_a=True) @cast_precision def _filter(self, inputs, type_input, natoms, type_embedding=None, activation_fn=tf.nn.tanh, stddev=1.0, bavg=0.0, name='linear', reuse=None, trainable=True): nframes = tf.shape(tf.reshape(inputs, [-1, natoms[0], self.ndescrpt]))[0] # natom x (nei x 4) shape = inputs.get_shape().as_list() outputs_size = [1] + self.filter_neuron outputs_size_2 = self.n_axis_neuron all_excluded = all([(type_input, type_i) in self.exclude_types for type_i in range(self.ntypes)]) if all_excluded: # all types are excluded so result and qmat should be zeros # we can safaly return a zero matrix... # See also https://stackoverflow.com/a/34725458/9567349 # result: natom x outputs_size x outputs_size_2 # qmat: natom x outputs_size x 3 natom = tf.shape(inputs)[0] result = tf.cast( tf.fill((natom, outputs_size_2, outputs_size[-1]), 0.), GLOBAL_TF_FLOAT_PRECISION) qmat = tf.cast(tf.fill((natom, outputs_size[-1], 3), 0.), GLOBAL_TF_FLOAT_PRECISION) return result, qmat with tf.variable_scope(name, reuse=reuse): start_index = 0 type_i = 0 # natom x 4 x outputs_size if type_embedding is None: rets = [] for type_i in range(self.ntypes): ret = self._filter_lower(type_i, type_input, start_index, self.sel_a[type_i], inputs, nframes, natoms, type_embedding=type_embedding, is_exclude=(type_input, type_i) in self.exclude_types, activation_fn=activation_fn, stddev=stddev, bavg=bavg, trainable=trainable, suffix="_" + str(type_i)) if (type_input, type_i) not in self.exclude_types: # add zero is meaningless; skip rets.append(ret) start_index += self.sel_a[type_i] # faster to use accumulate_n than multiple add xyz_scatter_1 = tf.accumulate_n(rets) else: xyz_scatter_1 = self._filter_lower( type_i, type_input, start_index, np.cumsum(self.sel_a)[-1], inputs, nframes, natoms, type_embedding=type_embedding, is_exclude=False, activation_fn=activation_fn, stddev=stddev, bavg=bavg, trainable=trainable) # natom x nei x outputs_size # xyz_scatter = tf.concat(xyz_scatter_total, axis=1) # natom x nei x 4 # inputs_reshape = tf.reshape(inputs, [-1, shape[1]//4, 4]) # natom x 4 x outputs_size # xyz_scatter_1 = tf.matmul(inputs_reshape, xyz_scatter, transpose_a = True) if self.original_sel is None: # shape[1] = nnei * 4 nnei = shape[1] / 4 else: nnei = tf.cast( tf.Variable(np.sum(self.original_sel), dtype=tf.int32, trainable=False, name="nnei"), self.filter_precision) xyz_scatter_1 = xyz_scatter_1 / nnei # natom x 4 x outputs_size_2 xyz_scatter_2 = tf.slice(xyz_scatter_1, [0, 0, 0], [-1, -1, outputs_size_2]) # # natom x 3 x outputs_size_2 # qmat = tf.slice(xyz_scatter_2, [0,1,0], [-1, 3, -1]) # natom x 3 x outputs_size_1 qmat = tf.slice(xyz_scatter_1, [0, 1, 0], [-1, 3, -1]) # natom x outputs_size_1 x 3 qmat = tf.transpose(qmat, perm=[0, 2, 1]) # natom x outputs_size x outputs_size_2 result = tf.matmul(xyz_scatter_1, xyz_scatter_2, transpose_a=True) # natom x (outputs_size x outputs_size_2) result = tf.reshape(result, [-1, outputs_size_2 * outputs_size[-1]]) return result, qmat def init_variables( self, graph: tf.Graph, graph_def: tf.GraphDef, suffix: str = "", ) -> None: """ Init the embedding net variables with the given dict Parameters ---------- graph : tf.Graph The input frozen model graph graph_def : tf.GraphDef The input frozen model graph_def suffix : str, optional The suffix of the scope """ super().init_variables(graph=graph, graph_def=graph_def, suffix=suffix) try: self.original_sel = get_tensor_by_name_from_graph( graph, 'descrpt_attr%s/original_sel' % suffix) except GraphWithoutTensorError: # original_sel is not restored in old graphs, assume sel never changed before pass # check sel == original sel? try: sel = get_tensor_by_name_from_graph(graph, 'descrpt_attr%s/sel' % suffix) except GraphWithoutTensorError: # sel is not restored in old graphs pass else: if not np.array_equal(np.array(self.sel_a), sel): if not self.set_davg_zero: raise RuntimeError( "Adjusting sel is only supported when `set_davg_zero` is true!" ) # as set_davg_zero, self.davg is safely zero self.davg = np.zeros([self.ntypes, self.ndescrpt ]).astype(GLOBAL_NP_FLOAT_PRECISION) new_dstd = np.ones([self.ntypes, self.ndescrpt ]).astype(GLOBAL_NP_FLOAT_PRECISION) # shape of davg and dstd is (ntypes, ndescrpt), ndescrpt = 4*sel n_descpt = np.array(self.sel_a) * 4 n_descpt_old = np.array(sel) * 4 end_index = np.cumsum(n_descpt) end_index_old = np.cumsum(n_descpt_old) start_index = np.roll(end_index, 1) start_index[0] = 0 start_index_old = np.roll(end_index_old, 1) start_index_old[0] = 0 for nn, oo, ii, jj in zip(n_descpt, n_descpt_old, start_index, start_index_old): if nn < oo: # new size is smaller, copy part of std new_dstd[:, ii:ii + nn] = self.dstd[:, jj:jj + nn] else: # new size is larger, copy all, the rest remains 1 new_dstd[:, ii:ii + oo] = self.dstd[:, jj:jj + oo] self.dstd = new_dstd if self.original_sel is None: self.original_sel = sel
class DescrptSeR(DescrptSe): """DeepPot-SE constructed from radial information of atomic configurations. The embedding takes the distance between atoms as input. Parameters ---------- rcut The cut-off radius rcut_smth From where the environment matrix should be smoothed sel : list[str] sel[i] specifies the maxmum number of type i atoms in the cut-off radius neuron : list[int] Number of neurons in each hidden layers of the embedding net resnet_dt Time-step `dt` in the resnet construction: y = x + dt * \phi (Wx + b) trainable If the weights of embedding net are trainable. seed Random seed for initializing the network parameters. type_one_side Try to build N_types embedding nets. Otherwise, building N_types^2 embedding nets exclude_types : List[List[int]] The excluded pairs of types which have no interaction with each other. For example, `[[0, 1]]` means no interaction between type 0 and type 1. activation_function The activation function in the embedding net. Supported options are {0} precision The precision of the embedding net parameters. Supported options are {1} uniform_seed Only for the purpose of backward compatibility, retrieves the old behavior of using the random seed """ @docstring_parameter(list_to_doc(ACTIVATION_FN_DICT.keys()), list_to_doc(PRECISION_DICT.keys())) def __init__(self, rcut: float, rcut_smth: float, sel: List[str], neuron: List[int] = [24, 48, 96], resnet_dt: bool = False, trainable: bool = True, seed: int = None, type_one_side: bool = True, exclude_types: List[List[int]] = [], set_davg_zero: bool = False, activation_function: str = 'tanh', precision: str = 'default', uniform_seed: bool = False) -> None: """ Constructor """ # args = ClassArg()\ # .add('sel', list, must = True) \ # .add('rcut', float, default = 6.0) \ # .add('rcut_smth',float, default = 0.5) \ # .add('neuron', list, default = [10, 20, 40]) \ # .add('resnet_dt',bool, default = False) \ # .add('trainable',bool, default = True) \ # .add('seed', int) \ # .add('type_one_side', bool, default = False) \ # .add('exclude_types', list, default = []) \ # .add('set_davg_zero', bool, default = False) \ # .add("activation_function", str, default = "tanh") \ # .add("precision", str, default = "default") # class_data = args.parse(jdata) if rcut < rcut_smth: raise RuntimeError( "rcut_smth (%f) should be no more than rcut (%f)!" % (rcut_smth, rcut)) self.sel_r = sel self.rcut = rcut self.rcut_smth = rcut_smth self.filter_neuron = neuron self.filter_resnet_dt = resnet_dt self.seed = seed self.uniform_seed = uniform_seed self.seed_shift = embedding_net_rand_seed_shift(self.filter_neuron) self.trainable = trainable self.filter_activation_fn = get_activation_func(activation_function) self.filter_precision = get_precision(precision) exclude_types = exclude_types self.exclude_types = set() for tt in exclude_types: assert (len(tt) == 2) self.exclude_types.add((tt[0], tt[1])) self.exclude_types.add((tt[1], tt[0])) self.set_davg_zero = set_davg_zero self.type_one_side = type_one_side # descrpt config self.sel_a = [0 for ii in range(len(self.sel_r))] self.ntypes = len(self.sel_r) # numb of neighbors and numb of descrptors self.nnei_a = np.cumsum(self.sel_a)[-1] self.nnei_r = np.cumsum(self.sel_r)[-1] self.nnei = self.nnei_a + self.nnei_r self.ndescrpt_a = self.nnei_a * 4 self.ndescrpt_r = self.nnei_r * 1 self.ndescrpt = self.nnei_r self.useBN = False self.davg = None self.dstd = None self.compress = False self.embedding_net_variables = None self.place_holders = {} avg_zero = np.zeros([self.ntypes, self.ndescrpt]).astype(GLOBAL_NP_FLOAT_PRECISION) std_ones = np.ones([self.ntypes, self.ndescrpt]).astype(GLOBAL_NP_FLOAT_PRECISION) sub_graph = tf.Graph() with sub_graph.as_default(): name_pfx = 'd_ser_' for ii in ['coord', 'box']: self.place_holders[ii] = tf.placeholder( GLOBAL_NP_FLOAT_PRECISION, [None, None], name=name_pfx + 't_' + ii) self.place_holders['type'] = tf.placeholder(tf.int32, [None, None], name=name_pfx + 't_type') self.place_holders['natoms_vec'] = tf.placeholder( tf.int32, [self.ntypes + 2], name=name_pfx + 't_natoms') self.place_holders['default_mesh'] = tf.placeholder( tf.int32, [None], name=name_pfx + 't_mesh') self.stat_descrpt, descrpt_deriv, rij, nlist \ = op_module.prod_env_mat_r(self.place_holders['coord'], self.place_holders['type'], self.place_holders['natoms_vec'], self.place_holders['box'], self.place_holders['default_mesh'], tf.constant(avg_zero), tf.constant(std_ones), rcut = self.rcut, rcut_smth = self.rcut_smth, sel = self.sel_r) self.sub_sess = tf.Session(graph=sub_graph, config=default_tf_session_config) def get_rcut(self): """ Returns the cut-off radisu """ return self.rcut def get_ntypes(self): """ Returns the number of atom types """ return self.ntypes def get_dim_out(self): """ Returns the output dimension of this descriptor """ return self.filter_neuron[-1] def get_nlist(self): """ Returns ------- nlist Neighbor list rij The relative distance between the neighbor and the center atom. sel_a The number of neighbors with full information sel_r The number of neighbors with only radial information """ return self.nlist, self.rij, self.sel_a, self.sel_r def compute_input_stats(self, data_coord, data_box, data_atype, natoms_vec, mesh, input_dict): """ Compute the statisitcs (avg and std) of the training data. The input will be normalized by the statistics. Parameters ---------- data_coord The coordinates. Can be generated by deepmd.model.make_stat_input data_box The box. Can be generated by deepmd.model.make_stat_input data_atype The atom types. Can be generated by deepmd.model.make_stat_input natoms_vec The vector for the number of atoms of the system and different types of atoms. Can be generated by deepmd.model.make_stat_input mesh The mesh for neighbor searching. Can be generated by deepmd.model.make_stat_input input_dict Dictionary for additional input """ all_davg = [] all_dstd = [] sumr = [] sumn = [] sumr2 = [] for cc, bb, tt, nn, mm in zip(data_coord, data_box, data_atype, natoms_vec, mesh): sysr,sysr2,sysn \ = self._compute_dstats_sys_se_r(cc,bb,tt,nn,mm) sumr.append(sysr) sumn.append(sysn) sumr2.append(sysr2) sumr = np.sum(sumr, axis=0) sumn = np.sum(sumn, axis=0) sumr2 = np.sum(sumr2, axis=0) for type_i in range(self.ntypes): davgunit = [sumr[type_i] / sumn[type_i]] dstdunit = [ self._compute_std(sumr2[type_i], sumr[type_i], sumn[type_i]) ] davg = np.tile(davgunit, self.ndescrpt // 1) dstd = np.tile(dstdunit, self.ndescrpt // 1) all_davg.append(davg) all_dstd.append(dstd) if not self.set_davg_zero: self.davg = np.array(all_davg) self.dstd = np.array(all_dstd) def enable_compression( self, min_nbor_dist: float, model_file: str = 'frozon_model.pb', table_extrapolate: float = 5, table_stride_1: float = 0.01, table_stride_2: float = 0.1, check_frequency: int = -1, suffix: str = "", ) -> None: """ Reveive the statisitcs (distance, max_nbor_size and env_mat_range) of the training data. Parameters ---------- min_nbor_dist The nearest distance between atoms model_file The original frozen model, which will be compressed by the program table_extrapolate The scale of model extrapolation table_stride_1 The uniform stride of the first table table_stride_2 The uniform stride of the second table check_frequency The overflow check frequency suffix : str, optional The suffix of the scope """ assert ( not self.filter_resnet_dt ), "Model compression error: descriptor resnet_dt must be false!" for ii in range(len(self.filter_neuron) - 1): if self.filter_neuron[ii] * 2 != self.filter_neuron[ii + 1]: raise NotImplementedError( "Model Compression error: descriptor neuron [%s] is not supported by model compression! " "The size of the next layer of the neural network must be twice the size of the previous layer." % ','.join([str(item) for item in self.filter_neuron])) self.compress = True self.table = DPTabulate(self, self.filter_neuron, model_file, activation_fn=self.filter_activation_fn, suffix=suffix) self.table_config = [ table_extrapolate, table_stride_1, table_stride_2, check_frequency ] self.lower, self.upper \ = self.table.build(min_nbor_dist, table_extrapolate, table_stride_1, table_stride_2) graph, _ = load_graph_def(model_file) self.davg = get_tensor_by_name_from_graph( graph, 'descrpt_attr%s/t_avg' % suffix) self.dstd = get_tensor_by_name_from_graph( graph, 'descrpt_attr%s/t_std' % suffix) def build(self, coord_: tf.Tensor, atype_: tf.Tensor, natoms: tf.Tensor, box_: tf.Tensor, mesh: tf.Tensor, input_dict: dict, reuse: bool = None, suffix: str = '') -> tf.Tensor: """ Build the computational graph for the descriptor Parameters ---------- coord_ The coordinate of atoms atype_ The type of atoms natoms The number of atoms. This tensor has the length of Ntypes + 2 natoms[0]: number of local atoms natoms[1]: total number of atoms held by this processor natoms[i]: 2 <= i < Ntypes+2, number of type i atoms mesh For historical reasons, only the length of the Tensor matters. if size of mesh == 6, pbc is assumed. if size of mesh == 0, no-pbc is assumed. input_dict Dictionary for additional inputs reuse The weights in the networks should be reused when get the variable. suffix Name suffix to identify this descriptor Returns ------- descriptor The output descriptor """ davg = self.davg dstd = self.dstd with tf.variable_scope('descrpt_attr' + suffix, reuse=reuse): if davg is None: davg = np.zeros([self.ntypes, self.ndescrpt]) if dstd is None: dstd = np.ones([self.ntypes, self.ndescrpt]) t_rcut = tf.constant(self.rcut, name='rcut', dtype=GLOBAL_TF_FLOAT_PRECISION) t_ntypes = tf.constant(self.ntypes, name='ntypes', dtype=tf.int32) t_ndescrpt = tf.constant(self.ndescrpt, name='ndescrpt', dtype=tf.int32) t_sel = tf.constant(self.sel_a, name='sel', dtype=tf.int32) self.t_avg = tf.get_variable( 't_avg', davg.shape, dtype=GLOBAL_TF_FLOAT_PRECISION, trainable=False, initializer=tf.constant_initializer(davg)) self.t_std = tf.get_variable( 't_std', dstd.shape, dtype=GLOBAL_TF_FLOAT_PRECISION, trainable=False, initializer=tf.constant_initializer(dstd)) coord = tf.reshape(coord_, [-1, natoms[1] * 3]) box = tf.reshape(box_, [-1, 9]) atype = tf.reshape(atype_, [-1, natoms[1]]) self.descrpt, self.descrpt_deriv, self.rij, self.nlist \ = op_module.prod_env_mat_r(coord, atype, natoms, box, mesh, self.t_avg, self.t_std, rcut = self.rcut, rcut_smth = self.rcut_smth, sel = self.sel_r) self.descrpt_reshape = tf.reshape(self.descrpt, [-1, self.ndescrpt]) self._identity_tensors(suffix=suffix) # only used when tensorboard was set as true tf.summary.histogram('descrpt', self.descrpt) tf.summary.histogram('rij', self.rij) tf.summary.histogram('nlist', self.nlist) self.dout = self._pass_filter(self.descrpt_reshape, natoms, suffix=suffix, reuse=reuse, trainable=self.trainable) tf.summary.histogram('embedding_net_output', self.dout) return self.dout def prod_force_virial( self, atom_ener: tf.Tensor, natoms: tf.Tensor) -> Tuple[tf.Tensor, tf.Tensor, tf.Tensor]: """ Compute force and virial Parameters ---------- atom_ener The atomic energy natoms The number of atoms. This tensor has the length of Ntypes + 2 natoms[0]: number of local atoms natoms[1]: total number of atoms held by this processor natoms[i]: 2 <= i < Ntypes+2, number of type i atoms Returns ------- force The force on atoms virial The total virial atom_virial The atomic virial """ [net_deriv] = tf.gradients(atom_ener, self.descrpt_reshape) tf.summary.histogram('net_derivative', net_deriv) net_deriv_reshape = tf.reshape(net_deriv, [-1, natoms[0] * self.ndescrpt]) force \ = op_module.prod_force_se_r (net_deriv_reshape, self.descrpt_deriv, self.nlist, natoms) virial, atom_virial \ = op_module.prod_virial_se_r (net_deriv_reshape, self.descrpt_deriv, self.rij, self.nlist, natoms) tf.summary.histogram('force', force) tf.summary.histogram('virial', virial) tf.summary.histogram('atom_virial', atom_virial) return force, virial, atom_virial def _pass_filter(self, inputs, natoms, reuse=None, suffix='', trainable=True): start_index = 0 inputs = tf.reshape(inputs, [-1, self.ndescrpt * natoms[0]]) output = [] if not (self.type_one_side and len(self.exclude_types) == 0): for type_i in range(self.ntypes): inputs_i = tf.slice(inputs, [0, start_index * self.ndescrpt], [-1, natoms[2 + type_i] * self.ndescrpt]) inputs_i = tf.reshape(inputs_i, [-1, self.ndescrpt]) if self.type_one_side: # reuse NN parameters for all types to support type_one_side along with exclude_types reuse = tf.AUTO_REUSE filter_name = 'filter_type_all' + suffix else: filter_name = 'filter_type_' + str(type_i) + suffix layer = self._filter_r(inputs_i, type_i, name=filter_name, natoms=natoms, reuse=reuse, trainable=trainable, activation_fn=self.filter_activation_fn) layer = tf.reshape(layer, [ tf.shape(inputs)[0], natoms[2 + type_i] * self.get_dim_out() ]) output.append(layer) start_index += natoms[2 + type_i] else: inputs_i = inputs inputs_i = tf.reshape(inputs_i, [-1, self.ndescrpt]) type_i = -1 layer = self._filter_r(inputs_i, type_i, name='filter_type_all' + suffix, natoms=natoms, reuse=reuse, trainable=trainable, activation_fn=self.filter_activation_fn) layer = tf.reshape( layer, [tf.shape(inputs)[0], natoms[0] * self.get_dim_out()]) output.append(layer) output = tf.concat(output, axis=1) return output def _compute_dstats_sys_se_r(self, data_coord, data_box, data_atype, natoms_vec, mesh): dd_all \ = run_sess(self.sub_sess, self.stat_descrpt, feed_dict = { self.place_holders['coord']: data_coord, self.place_holders['type']: data_atype, self.place_holders['natoms_vec']: natoms_vec, self.place_holders['box']: data_box, self.place_holders['default_mesh']: mesh, }) natoms = natoms_vec dd_all = np.reshape(dd_all, [-1, self.ndescrpt * natoms[0]]) start_index = 0 sysr = [] sysn = [] sysr2 = [] for type_i in range(self.ntypes): end_index = start_index + self.ndescrpt * natoms[2 + type_i] dd = dd_all[:, start_index:end_index] dd = np.reshape(dd, [-1, self.ndescrpt]) start_index = end_index # compute dd = np.reshape(dd, [-1, 1]) ddr = dd[:, :1] sumr = np.sum(ddr) sumn = dd.shape[0] sumr2 = np.sum(np.multiply(ddr, ddr)) sysr.append(sumr) sysn.append(sumn) sysr2.append(sumr2) return sysr, sysr2, sysn def _compute_std(self, sumv2, sumv, sumn): val = np.sqrt(sumv2 / sumn - np.multiply(sumv / sumn, sumv / sumn)) if np.abs(val) < 1e-2: val = 1e-2 return val @cast_precision def _filter_r(self, inputs, type_input, natoms, activation_fn=tf.nn.tanh, stddev=1.0, bavg=0.0, name='linear', reuse=None, trainable=True): # natom x nei outputs_size = [1] + self.filter_neuron with tf.variable_scope(name, reuse=reuse): start_index = 0 xyz_scatter_total = [] for type_i in range(self.ntypes): # cut-out inputs # with natom x nei_type_i inputs_i = tf.slice(inputs, [0, start_index], [-1, self.sel_r[type_i]]) start_index += self.sel_r[type_i] shape_i = inputs_i.get_shape().as_list() # with (natom x nei_type_i) x 1 xyz_scatter = tf.reshape(inputs_i, [-1, 1]) if self.compress and ((type_input, type_i) not in self.exclude_types): info = [ self.lower, self.upper, self.upper * self.table_config[0], self.table_config[1], self.table_config[2], self.table_config[3] ] net = 'filter_' + str(type_input) + '_net_' + str(type_i) xyz_scatter = op_module.tabulate_fusion_se_r( tf.cast(self.table.data[net], self.filter_precision), info, inputs_i, last_layer_size=outputs_size[-1]) elif (type_input, type_i) not in self.exclude_types: xyz_scatter = embedding_net( xyz_scatter, self.filter_neuron, self.filter_precision, activation_fn=activation_fn, resnet_dt=self.filter_resnet_dt, name_suffix="_" + str(type_i), stddev=stddev, bavg=bavg, seed=self.seed, trainable=trainable, uniform_seed=self.uniform_seed, initial_variables=self.embedding_net_variables, ) if (not self.uniform_seed) and (self.seed is not None): self.seed += self.seed_shift # natom x nei_type_i x out_size xyz_scatter = tf.reshape( xyz_scatter, (-1, shape_i[1], outputs_size[-1])) else: natom = tf.shape(inputs)[0] xyz_scatter = tf.cast( tf.fill((natom, shape_i[1], outputs_size[-1]), 0.), self.filter_precision) xyz_scatter_total.append(xyz_scatter) # natom x nei x outputs_size xyz_scatter = tf.concat(xyz_scatter_total, axis=1) # natom x outputs_size # res_rescale = 1. / 5. result = tf.reduce_mean(xyz_scatter, axis=1) * res_rescale return result
class DescrptSeT(DescrptSe): """DeepPot-SE constructed from all information (both angular and radial) of atomic configurations. The embedding takes angles between two neighboring atoms as input. Parameters ---------- rcut The cut-off radius rcut_smth From where the environment matrix should be smoothed sel : list[str] sel[i] specifies the maxmum number of type i atoms in the cut-off radius neuron : list[int] Number of neurons in each hidden layers of the embedding net resnet_dt Time-step `dt` in the resnet construction: y = x + dt * \phi (Wx + b) trainable If the weights of embedding net are trainable. seed Random seed for initializing the network parameters. set_davg_zero Set the shift of embedding net input to zero. activation_function The activation function in the embedding net. Supported options are {0} precision The precision of the embedding net parameters. Supported options are {1} uniform_seed Only for the purpose of backward compatibility, retrieves the old behavior of using the random seed """ @docstring_parameter(list_to_doc(ACTIVATION_FN_DICT.keys()), list_to_doc(PRECISION_DICT.keys())) def __init__(self, rcut: float, rcut_smth: float, sel: List[str], neuron: List[int] = [24, 48, 96], resnet_dt: bool = False, trainable: bool = True, seed: int = None, set_davg_zero: bool = False, activation_function: str = 'tanh', precision: str = 'default', uniform_seed: bool = False) -> None: """ Constructor """ if rcut < rcut_smth: raise RuntimeError( "rcut_smth (%f) should be no more than rcut (%f)!" % (rcut_smth, rcut)) self.sel_a = sel self.rcut_r = rcut self.rcut_r_smth = rcut_smth self.filter_neuron = neuron self.filter_resnet_dt = resnet_dt self.seed = seed self.uniform_seed = uniform_seed self.seed_shift = embedding_net_rand_seed_shift(self.filter_neuron) self.trainable = trainable self.filter_activation_fn = get_activation_func(activation_function) self.filter_precision = get_precision(precision) # self.exclude_types = set() # for tt in exclude_types: # assert(len(tt) == 2) # self.exclude_types.add((tt[0], tt[1])) # self.exclude_types.add((tt[1], tt[0])) self.set_davg_zero = set_davg_zero # descrpt config self.sel_r = [0 for ii in range(len(self.sel_a))] self.ntypes = len(self.sel_a) assert (self.ntypes == len(self.sel_r)) self.rcut_a = -1 # numb of neighbors and numb of descrptors self.nnei_a = np.cumsum(self.sel_a)[-1] self.nnei_r = np.cumsum(self.sel_r)[-1] self.nnei = self.nnei_a + self.nnei_r self.ndescrpt_a = self.nnei_a * 4 self.ndescrpt_r = self.nnei_r * 1 self.ndescrpt = self.ndescrpt_a + self.ndescrpt_r self.useBN = False self.dstd = None self.davg = None self.compress = False self.embedding_net_variables = None self.place_holders = {} avg_zero = np.zeros([self.ntypes, self.ndescrpt]).astype(GLOBAL_NP_FLOAT_PRECISION) std_ones = np.ones([self.ntypes, self.ndescrpt]).astype(GLOBAL_NP_FLOAT_PRECISION) sub_graph = tf.Graph() with sub_graph.as_default(): name_pfx = 'd_sea_' for ii in ['coord', 'box']: self.place_holders[ii] = tf.placeholder( GLOBAL_NP_FLOAT_PRECISION, [None, None], name=name_pfx + 't_' + ii) self.place_holders['type'] = tf.placeholder(tf.int32, [None, None], name=name_pfx + 't_type') self.place_holders['natoms_vec'] = tf.placeholder( tf.int32, [self.ntypes + 2], name=name_pfx + 't_natoms') self.place_holders['default_mesh'] = tf.placeholder( tf.int32, [None], name=name_pfx + 't_mesh') self.stat_descrpt, descrpt_deriv, rij, nlist \ = op_module.prod_env_mat_a(self.place_holders['coord'], self.place_holders['type'], self.place_holders['natoms_vec'], self.place_holders['box'], self.place_holders['default_mesh'], tf.constant(avg_zero), tf.constant(std_ones), rcut_a = self.rcut_a, rcut_r = self.rcut_r, rcut_r_smth = self.rcut_r_smth, sel_a = self.sel_a, sel_r = self.sel_r) self.sub_sess = tf.Session(graph=sub_graph, config=default_tf_session_config) def get_rcut(self) -> float: """ Returns the cut-off radisu """ return self.rcut_r def get_ntypes(self) -> int: """ Returns the number of atom types """ return self.ntypes def get_dim_out(self) -> int: """ Returns the output dimension of this descriptor """ return self.filter_neuron[-1] def get_nlist(self) -> Tuple[tf.Tensor, tf.Tensor, List[int], List[int]]: """ Returns ------- nlist Neighbor list rij The relative distance between the neighbor and the center atom. sel_a The number of neighbors with full information sel_r The number of neighbors with only radial information """ return self.nlist, self.rij, self.sel_a, self.sel_r def compute_input_stats(self, data_coord: list, data_box: list, data_atype: list, natoms_vec: list, mesh: list, input_dict: dict) -> None: """ Compute the statisitcs (avg and std) of the training data. The input will be normalized by the statistics. Parameters ---------- data_coord The coordinates. Can be generated by deepmd.model.make_stat_input data_box The box. Can be generated by deepmd.model.make_stat_input data_atype The atom types. Can be generated by deepmd.model.make_stat_input natoms_vec The vector for the number of atoms of the system and different types of atoms. Can be generated by deepmd.model.make_stat_input mesh The mesh for neighbor searching. Can be generated by deepmd.model.make_stat_input input_dict Dictionary for additional input """ all_davg = [] all_dstd = [] if True: sumr = [] suma = [] sumn = [] sumr2 = [] suma2 = [] for cc, bb, tt, nn, mm in zip(data_coord, data_box, data_atype, natoms_vec, mesh): sysr,sysr2,sysa,sysa2,sysn \ = self._compute_dstats_sys_smth(cc,bb,tt,nn,mm) sumr.append(sysr) suma.append(sysa) sumn.append(sysn) sumr2.append(sysr2) suma2.append(sysa2) sumr = np.sum(sumr, axis=0) suma = np.sum(suma, axis=0) sumn = np.sum(sumn, axis=0) sumr2 = np.sum(sumr2, axis=0) suma2 = np.sum(suma2, axis=0) for type_i in range(self.ntypes): davgunit = [sumr[type_i] / sumn[type_i], 0, 0, 0] dstdunit = [ self._compute_std(sumr2[type_i], sumr[type_i], sumn[type_i]), self._compute_std(suma2[type_i], suma[type_i], sumn[type_i]), self._compute_std(suma2[type_i], suma[type_i], sumn[type_i]), self._compute_std(suma2[type_i], suma[type_i], sumn[type_i]) ] davg = np.tile(davgunit, self.ndescrpt // 4) dstd = np.tile(dstdunit, self.ndescrpt // 4) all_davg.append(davg) all_dstd.append(dstd) if not self.set_davg_zero: self.davg = np.array(all_davg) self.dstd = np.array(all_dstd) def enable_compression( self, min_nbor_dist: float, model_file: str = 'frozon_model.pb', table_extrapolate: float = 5, table_stride_1: float = 0.01, table_stride_2: float = 0.1, check_frequency: int = -1, suffix: str = "", ) -> None: """ Reveive the statisitcs (distance, max_nbor_size and env_mat_range) of the training data. Parameters ---------- min_nbor_dist The nearest distance between atoms model_file The original frozen model, which will be compressed by the program table_extrapolate The scale of model extrapolation table_stride_1 The uniform stride of the first table table_stride_2 The uniform stride of the second table check_frequency The overflow check frequency suffix : str, optional The suffix of the scope """ assert ( not self.filter_resnet_dt ), "Model compression error: descriptor resnet_dt must be false!" for ii in range(len(self.filter_neuron) - 1): if self.filter_neuron[ii] * 2 != self.filter_neuron[ii + 1]: raise NotImplementedError( "Model Compression error: descriptor neuron [%s] is not supported by model compression! " "The size of the next layer of the neural network must be twice the size of the previous layer." % ','.join([str(item) for item in self.filter_neuron])) self.compress = True self.table = DPTabulate(self, self.filter_neuron, model_file, activation_fn=self.filter_activation_fn, suffix=suffix) self.table_config = [ table_extrapolate, table_stride_1 * 10, table_stride_2 * 10, check_frequency ] self.lower, self.upper \ = self.table.build(min_nbor_dist, table_extrapolate, table_stride_1 * 10, table_stride_2 * 10) graph, _ = load_graph_def(model_file) self.davg = get_tensor_by_name_from_graph( graph, 'descrpt_attr%s/t_avg' % suffix) self.dstd = get_tensor_by_name_from_graph( graph, 'descrpt_attr%s/t_std' % suffix) def build(self, coord_: tf.Tensor, atype_: tf.Tensor, natoms: tf.Tensor, box_: tf.Tensor, mesh: tf.Tensor, input_dict: dict, reuse: bool = None, suffix: str = '') -> tf.Tensor: """ Build the computational graph for the descriptor Parameters ---------- coord_ The coordinate of atoms atype_ The type of atoms natoms The number of atoms. This tensor has the length of Ntypes + 2 natoms[0]: number of local atoms natoms[1]: total number of atoms held by this processor natoms[i]: 2 <= i < Ntypes+2, number of type i atoms mesh For historical reasons, only the length of the Tensor matters. if size of mesh == 6, pbc is assumed. if size of mesh == 0, no-pbc is assumed. input_dict Dictionary for additional inputs reuse The weights in the networks should be reused when get the variable. suffix Name suffix to identify this descriptor Returns ------- descriptor The output descriptor """ davg = self.davg dstd = self.dstd with tf.variable_scope('descrpt_attr' + suffix, reuse=reuse): if davg is None: davg = np.zeros([self.ntypes, self.ndescrpt]) if dstd is None: dstd = np.ones([self.ntypes, self.ndescrpt]) t_rcut = tf.constant(np.max([self.rcut_r, self.rcut_a]), name='rcut', dtype=GLOBAL_TF_FLOAT_PRECISION) t_ntypes = tf.constant(self.ntypes, name='ntypes', dtype=tf.int32) t_ndescrpt = tf.constant(self.ndescrpt, name='ndescrpt', dtype=tf.int32) t_sel = tf.constant(self.sel_a, name='sel', dtype=tf.int32) self.t_avg = tf.get_variable( 't_avg', davg.shape, dtype=GLOBAL_TF_FLOAT_PRECISION, trainable=False, initializer=tf.constant_initializer(davg)) self.t_std = tf.get_variable( 't_std', dstd.shape, dtype=GLOBAL_TF_FLOAT_PRECISION, trainable=False, initializer=tf.constant_initializer(dstd)) coord = tf.reshape(coord_, [-1, natoms[1] * 3]) box = tf.reshape(box_, [-1, 9]) atype = tf.reshape(atype_, [-1, natoms[1]]) self.descrpt, self.descrpt_deriv, self.rij, self.nlist \ = op_module.prod_env_mat_a (coord, atype, natoms, box, mesh, self.t_avg, self.t_std, rcut_a = self.rcut_a, rcut_r = self.rcut_r, rcut_r_smth = self.rcut_r_smth, sel_a = self.sel_a, sel_r = self.sel_r) self.descrpt_reshape = tf.reshape(self.descrpt, [-1, self.ndescrpt]) self._identity_tensors(suffix=suffix) self.dout, self.qmat = self._pass_filter(self.descrpt_reshape, atype, natoms, input_dict, suffix=suffix, reuse=reuse, trainable=self.trainable) return self.dout def prod_force_virial( self, atom_ener: tf.Tensor, natoms: tf.Tensor) -> Tuple[tf.Tensor, tf.Tensor, tf.Tensor]: """ Compute force and virial Parameters ---------- atom_ener The atomic energy natoms The number of atoms. This tensor has the length of Ntypes + 2 natoms[0]: number of local atoms natoms[1]: total number of atoms held by this processor natoms[i]: 2 <= i < Ntypes+2, number of type i atoms Returns ------- force The force on atoms virial The total virial atom_virial The atomic virial """ [net_deriv] = tf.gradients(atom_ener, self.descrpt_reshape) net_deriv_reshape = tf.reshape(net_deriv, [-1, natoms[0] * self.ndescrpt]) force \ = op_module.prod_force_se_a (net_deriv_reshape, self.descrpt_deriv, self.nlist, natoms, n_a_sel = self.nnei_a, n_r_sel = self.nnei_r) virial, atom_virial \ = op_module.prod_virial_se_a (net_deriv_reshape, self.descrpt_deriv, self.rij, self.nlist, natoms, n_a_sel = self.nnei_a, n_r_sel = self.nnei_r) return force, virial, atom_virial def _pass_filter(self, inputs, atype, natoms, input_dict, reuse=None, suffix='', trainable=True): start_index = 0 inputs = tf.reshape(inputs, [-1, self.ndescrpt * natoms[0]]) output = [] output_qmat = [] inputs_i = inputs inputs_i = tf.reshape(inputs_i, [-1, self.ndescrpt]) type_i = -1 layer, qmat = self._filter(inputs_i, type_i, name='filter_type_all' + suffix, natoms=natoms, reuse=reuse, trainable=trainable, activation_fn=self.filter_activation_fn) layer = tf.reshape( layer, [tf.shape(inputs)[0], natoms[0] * self.get_dim_out()]) # qmat = tf.reshape(qmat, [tf.shape(inputs)[0], natoms[0] * self.get_dim_rot_mat_1() * 3]) output.append(layer) # output_qmat.append(qmat) output = tf.concat(output, axis=1) # output_qmat = tf.concat(output_qmat, axis = 1) return output, None def _compute_dstats_sys_smth(self, data_coord, data_box, data_atype, natoms_vec, mesh): dd_all \ = run_sess(self.sub_sess, self.stat_descrpt, feed_dict = { self.place_holders['coord']: data_coord, self.place_holders['type']: data_atype, self.place_holders['natoms_vec']: natoms_vec, self.place_holders['box']: data_box, self.place_holders['default_mesh']: mesh, }) natoms = natoms_vec dd_all = np.reshape(dd_all, [-1, self.ndescrpt * natoms[0]]) start_index = 0 sysr = [] sysa = [] sysn = [] sysr2 = [] sysa2 = [] for type_i in range(self.ntypes): end_index = start_index + self.ndescrpt * natoms[2 + type_i] dd = dd_all[:, start_index:end_index] dd = np.reshape(dd, [-1, self.ndescrpt]) start_index = end_index # compute dd = np.reshape(dd, [-1, 4]) ddr = dd[:, :1] dda = dd[:, 1:] sumr = np.sum(ddr) suma = np.sum(dda) / 3. sumn = dd.shape[0] sumr2 = np.sum(np.multiply(ddr, ddr)) suma2 = np.sum(np.multiply(dda, dda)) / 3. sysr.append(sumr) sysa.append(suma) sysn.append(sumn) sysr2.append(sumr2) sysa2.append(suma2) return sysr, sysr2, sysa, sysa2, sysn def _compute_std(self, sumv2, sumv, sumn): val = np.sqrt(sumv2 / sumn - np.multiply(sumv / sumn, sumv / sumn)) if np.abs(val) < 1e-2: val = 1e-2 return val @cast_precision def _filter(self, inputs, type_input, natoms, activation_fn=tf.nn.tanh, stddev=1.0, bavg=0.0, name='linear', reuse=None, trainable=True): # natom x (nei x 4) shape = inputs.get_shape().as_list() outputs_size = [1] + self.filter_neuron with tf.variable_scope(name, reuse=reuse): start_index_i = 0 result = None for type_i in range(self.ntypes): # cut-out inputs # with natom x (nei_type_i x 4) inputs_i = tf.slice(inputs, [0, start_index_i * 4], [-1, self.sel_a[type_i] * 4]) start_index_j = start_index_i start_index_i += self.sel_a[type_i] nei_type_i = self.sel_a[type_i] shape_i = inputs_i.get_shape().as_list() assert (shape_i[1] == nei_type_i * 4) # with natom x nei_type_i x 4 env_i = tf.reshape(inputs_i, [-1, nei_type_i, 4]) # with natom x nei_type_i x 3 env_i = tf.slice(env_i, [0, 0, 1], [-1, -1, -1]) for type_j in range(type_i, self.ntypes): # with natom x (nei_type_j x 4) inputs_j = tf.slice(inputs, [0, start_index_j * 4], [-1, self.sel_a[type_j] * 4]) start_index_j += self.sel_a[type_j] nei_type_j = self.sel_a[type_j] shape_j = inputs_j.get_shape().as_list() assert (shape_j[1] == nei_type_j * 4) # with natom x nei_type_j x 4 env_j = tf.reshape(inputs_j, [-1, nei_type_j, 4]) # with natom x nei_type_i x 3 env_j = tf.slice(env_j, [0, 0, 1], [-1, -1, -1]) # with natom x nei_type_i x nei_type_j env_ij = tf.einsum('ijm,ikm->ijk', env_i, env_j) # with (natom x nei_type_i x nei_type_j) ebd_env_ij = tf.reshape(env_ij, [-1, 1]) if self.compress: info = [ self.lower, self.upper, self.upper * self.table_config[0], self.table_config[1], self.table_config[2], self.table_config[3] ] net = 'filter_' + str(type_i) + '_net_' + str(type_j) res_ij = op_module.tabulate_fusion_se_t( tf.cast(self.table.data[net], self.filter_precision), info, ebd_env_ij, env_ij, last_layer_size=outputs_size[-1]) else: # with (natom x nei_type_i x nei_type_j) x out_size ebd_env_ij = embedding_net( ebd_env_ij, self.filter_neuron, self.filter_precision, activation_fn=activation_fn, resnet_dt=self.filter_resnet_dt, name_suffix=f"_{type_i}_{type_j}", stddev=stddev, bavg=bavg, seed=self.seed, trainable=trainable, uniform_seed=self.uniform_seed, initial_variables=self.embedding_net_variables, ) if (not self.uniform_seed) and (self.seed is not None): self.seed += self.seed_shift # with natom x nei_type_i x nei_type_j x out_size ebd_env_ij = tf.reshape( ebd_env_ij, [-1, nei_type_i, nei_type_j, outputs_size[-1]]) # with natom x out_size res_ij = tf.einsum('ijk,ijkm->im', env_ij, ebd_env_ij) res_ij = res_ij * (1.0 / float(nei_type_i) / float(nei_type_j)) if result is None: result = res_ij else: result += res_ij return result, None