Esempio n. 1
0
    def enable_compression(
        self,
        min_nbor_dist: float,
        model_file: str = 'frozon_model.pb',
        table_extrapolate: float = 5,
        table_stride_1: float = 0.01,
        table_stride_2: float = 0.1,
        check_frequency: int = -1,
        suffix: str = "",
    ) -> None:
        """
        Reveive the statisitcs (distance, max_nbor_size and env_mat_range) of the training data.
        
        Parameters
        ----------
        min_nbor_dist
                The nearest distance between atoms
        model_file
                The original frozen model, which will be compressed by the program
        table_extrapolate
                The scale of model extrapolation
        table_stride_1
                The uniform stride of the first table
        table_stride_2
                The uniform stride of the second table
        check_frequency
                The overflow check frequency
        suffix : str, optional
                The suffix of the scope
        """
        assert (
            not self.filter_resnet_dt
        ), "Model compression error: descriptor resnet_dt must be false!"
        self.compress = True
        self.table = DPTabulate(model_file,
                                self.type_one_side,
                                self.exclude_types,
                                self.compress_activation_fn,
                                suffix=suffix)
        self.table_config = [
            table_extrapolate, table_stride_1, table_stride_2, check_frequency
        ]
        self.lower, self.upper \
            = self.table.build(min_nbor_dist,
                               table_extrapolate,
                               table_stride_1,
                               table_stride_2)

        graph, _ = load_graph_def(model_file)
        self.davg = get_tensor_by_name_from_graph(
            graph, 'descrpt_attr%s/t_avg' % suffix)
        self.dstd = get_tensor_by_name_from_graph(
            graph, 'descrpt_attr%s/t_std' % suffix)
Esempio n. 2
0
    def enable_compression(
        self,
        min_nbor_dist: float,
        model_file: str = 'frozon_model.pb',
        table_extrapolate: float = 5,
        table_stride_1: float = 0.01,
        table_stride_2: float = 0.1,
        check_frequency: int = -1,
        suffix: str = "",
    ) -> None:
        """
        Reveive the statisitcs (distance, max_nbor_size and env_mat_range) of the training data.
        
        Parameters
        ----------
        min_nbor_dist
                The nearest distance between atoms
        model_file
                The original frozen model, which will be compressed by the program
        table_extrapolate
                The scale of model extrapolation
        table_stride_1
                The uniform stride of the first table
        table_stride_2
                The uniform stride of the second table
        check_frequency
                The overflow check frequency
        suffix : str, optional
                The suffix of the scope
        """
        # do some checks before the mocel compression process
        assert (
            not self.filter_resnet_dt
        ), "Model compression error: descriptor resnet_dt must be false!"
        for tt in self.exclude_types:
            if (tt[0] not in range(self.ntypes)) or (tt[1] not in range(
                    self.ntypes)):
                raise RuntimeError("exclude types" + str(tt) +
                                   " must within the number of atomic types " +
                                   str(self.ntypes) + "!")
        if (self.ntypes * self.ntypes - len(self.exclude_types) == 0):
            raise RuntimeError(
                "empty embedding-net are not supported in model compression!")

        for ii in range(len(self.filter_neuron) - 1):
            if self.filter_neuron[ii] * 2 != self.filter_neuron[ii + 1]:
                raise NotImplementedError(
                    "Model Compression error: descriptor neuron [%s] is not supported by model compression! "
                    "The size of the next layer of the neural network must be twice the size of the previous layer."
                    % ','.join([str(item) for item in self.filter_neuron]))

        self.compress = True
        self.table = DPTabulate(self,
                                self.filter_neuron,
                                model_file,
                                self.type_one_side,
                                self.exclude_types,
                                self.compress_activation_fn,
                                suffix=suffix)
        self.table_config = [
            table_extrapolate, table_stride_1, table_stride_2, check_frequency
        ]
        self.lower, self.upper \
            = self.table.build(min_nbor_dist,
                               table_extrapolate,
                               table_stride_1,
                               table_stride_2)

        graph, _ = load_graph_def(model_file)
        self.davg = get_tensor_by_name_from_graph(
            graph, 'descrpt_attr%s/t_avg' % suffix)
        self.dstd = get_tensor_by_name_from_graph(
            graph, 'descrpt_attr%s/t_std' % suffix)
Esempio n. 3
0
class DescrptSeA(DescrptSe):
    r"""DeepPot-SE constructed from all information (both angular and radial) of
    atomic configurations. The embedding takes the distance between atoms as input.

    The descriptor :math:`\mathcal{D}^i \in \mathcal{R}^{M_1 \times M_2}` is given by [1]_

    .. math::
        \mathcal{D}^i = (\mathcal{G}^i)^T \mathcal{R}^i (\mathcal{R}^i)^T \mathcal{G}^i_<

    where :math:`\mathcal{R}^i \in \mathbb{R}^{N \times 4}` is the coordinate
    matrix, and each row of :math:`\mathcal{R}^i` can be constructed as follows

    .. math::
        (\mathcal{R}^i)_j = [
        \begin{array}{c}
            s(r_{ji}) & \frac{s(r_{ji})x_{ji}}{r_{ji}} & \frac{s(r_{ji})y_{ji}}{r_{ji}} & \frac{s(r_{ji})z_{ji}}{r_{ji}}
        \end{array}
        ]

    where :math:`\mathbf{R}_{ji}=\mathbf{R}_j-\mathbf{R}_i = (x_{ji}, y_{ji}, z_{ji})` is 
    the relative coordinate and :math:`r_{ji}=\lVert \mathbf{R}_{ji} \lVert` is its norm.
    The switching function :math:`s(r)` is defined as:

    .. math::
        s(r)=
        \begin{cases}
        \frac{1}{r}, & r<r_s \\
        \frac{1}{r} \{ {(\frac{r - r_s}{ r_c - r_s})}^3 (-6 {(\frac{r - r_s}{ r_c - r_s})}^2 +15 \frac{r - r_s}{ r_c - r_s} -10) +1 \}, & r_s \leq r<r_c \\
        0, & r \geq r_c
        \end{cases}

    Each row of the embedding matrix  :math:`\mathcal{G}^i \in \mathbb{R}^{N \times M_1}` consists of outputs
    of a embedding network :math:`\mathcal{N}` of :math:`s(r_{ji})`:

    .. math::
        (\mathcal{G}^i)_j = \mathcal{N}(s(r_{ji}))

    :math:`\mathcal{G}^i_< \in \mathbb{R}^{N \times M_2}` takes first :math:`M_2`$` columns of
    :math:`\mathcal{G}^i`$`. The equation of embedding network :math:`\mathcal{N}` can be found at
    :meth:`deepmd.utils.network.embedding_net`.

    Parameters
    ----------
    rcut
            The cut-off radius :math:`r_c`
    rcut_smth
            From where the environment matrix should be smoothed :math:`r_s`
    sel : list[str]
            sel[i] specifies the maxmum number of type i atoms in the cut-off radius
    neuron : list[int]
            Number of neurons in each hidden layers of the embedding net :math:`\mathcal{N}`
    axis_neuron
            Number of the axis neuron :math:`M_2` (number of columns of the sub-matrix of the embedding matrix)
    resnet_dt
            Time-step `dt` in the resnet construction:
            y = x + dt * \phi (Wx + b)
    trainable
            If the weights of embedding net are trainable.
    seed
            Random seed for initializing the network parameters.
    type_one_side
            Try to build N_types embedding nets. Otherwise, building N_types^2 embedding nets
    exclude_types : List[List[int]]
            The excluded pairs of types which have no interaction with each other.
            For example, `[[0, 1]]` means no interaction between type 0 and type 1.
    set_davg_zero
            Set the shift of embedding net input to zero.
    activation_function
            The activation function in the embedding net. Supported options are {0}
    precision
            The precision of the embedding net parameters. Supported options are {1}
    uniform_seed
            Only for the purpose of backward compatibility, retrieves the old behavior of using the random seed
    
    References
    ----------
    .. [1] Linfeng Zhang, Jiequn Han, Han Wang, Wissam A. Saidi, Roberto Car, and E. Weinan. 2018.
       End-to-end symmetry preserving inter-atomic potential energy model for finite and extended
       systems. In Proceedings of the 32nd International Conference on Neural Information Processing
       Systems (NIPS'18). Curran Associates Inc., Red Hook, NY, USA, 4441–4451.
    """
    @docstring_parameter(list_to_doc(ACTIVATION_FN_DICT.keys()),
                         list_to_doc(PRECISION_DICT.keys()))
    def __init__(self,
                 rcut: float,
                 rcut_smth: float,
                 sel: List[str],
                 neuron: List[int] = [24, 48, 96],
                 axis_neuron: int = 8,
                 resnet_dt: bool = False,
                 trainable: bool = True,
                 seed: int = None,
                 type_one_side: bool = True,
                 exclude_types: List[List[int]] = [],
                 set_davg_zero: bool = False,
                 activation_function: str = 'tanh',
                 precision: str = 'default',
                 uniform_seed: bool = False) -> None:
        """
        Constructor
        """
        if rcut < rcut_smth:
            raise RuntimeError(
                "rcut_smth (%f) should be no more than rcut (%f)!" %
                (rcut_smth, rcut))
        self.sel_a = sel
        self.rcut_r = rcut
        self.rcut_r_smth = rcut_smth
        self.filter_neuron = neuron
        self.n_axis_neuron = axis_neuron
        self.filter_resnet_dt = resnet_dt
        self.seed = seed
        self.uniform_seed = uniform_seed
        self.seed_shift = embedding_net_rand_seed_shift(self.filter_neuron)
        self.trainable = trainable
        self.compress_activation_fn = get_activation_func(activation_function)
        self.filter_activation_fn = get_activation_func(activation_function)
        self.filter_precision = get_precision(precision)
        self.exclude_types = set()
        for tt in exclude_types:
            assert (len(tt) == 2)
            self.exclude_types.add((tt[0], tt[1]))
            self.exclude_types.add((tt[1], tt[0]))
        self.set_davg_zero = set_davg_zero
        self.type_one_side = type_one_side

        # descrpt config
        self.sel_r = [0 for ii in range(len(self.sel_a))]
        self.ntypes = len(self.sel_a)
        assert (self.ntypes == len(self.sel_r))
        self.rcut_a = -1
        # numb of neighbors and numb of descrptors
        self.nnei_a = np.cumsum(self.sel_a)[-1]
        self.nnei_r = np.cumsum(self.sel_r)[-1]
        self.nnei = self.nnei_a + self.nnei_r
        self.ndescrpt_a = self.nnei_a * 4
        self.ndescrpt_r = self.nnei_r * 1
        self.ndescrpt = self.ndescrpt_a + self.ndescrpt_r
        self.useBN = False
        self.dstd = None
        self.davg = None
        self.compress = False
        self.embedding_net_variables = None
        self.mixed_prec = None
        self.place_holders = {}
        nei_type = np.array([])
        for ii in range(self.ntypes):
            nei_type = np.append(nei_type,
                                 ii * np.ones(self.sel_a[ii]))  # like a mask
        self.nei_type = tf.constant(nei_type, dtype=tf.int32)

        avg_zero = np.zeros([self.ntypes,
                             self.ndescrpt]).astype(GLOBAL_NP_FLOAT_PRECISION)
        std_ones = np.ones([self.ntypes,
                            self.ndescrpt]).astype(GLOBAL_NP_FLOAT_PRECISION)
        sub_graph = tf.Graph()
        with sub_graph.as_default():
            name_pfx = 'd_sea_'
            for ii in ['coord', 'box']:
                self.place_holders[ii] = tf.placeholder(
                    GLOBAL_NP_FLOAT_PRECISION, [None, None],
                    name=name_pfx + 't_' + ii)
            self.place_holders['type'] = tf.placeholder(tf.int32, [None, None],
                                                        name=name_pfx +
                                                        't_type')
            self.place_holders['natoms_vec'] = tf.placeholder(
                tf.int32, [self.ntypes + 2], name=name_pfx + 't_natoms')
            self.place_holders['default_mesh'] = tf.placeholder(
                tf.int32, [None], name=name_pfx + 't_mesh')
            self.stat_descrpt, descrpt_deriv, rij, nlist \
                = op_module.prod_env_mat_a(self.place_holders['coord'],
                                         self.place_holders['type'],
                                         self.place_holders['natoms_vec'],
                                         self.place_holders['box'],
                                         self.place_holders['default_mesh'],
                                         tf.constant(avg_zero),
                                         tf.constant(std_ones),
                                         rcut_a = self.rcut_a,
                                         rcut_r = self.rcut_r,
                                         rcut_r_smth = self.rcut_r_smth,
                                         sel_a = self.sel_a,
                                         sel_r = self.sel_r)
        self.sub_sess = tf.Session(graph=sub_graph,
                                   config=default_tf_session_config)
        self.original_sel = None

    def get_rcut(self) -> float:
        """
        Returns the cut-off radius
        """
        return self.rcut_r

    def get_ntypes(self) -> int:
        """
        Returns the number of atom types
        """
        return self.ntypes

    def get_dim_out(self) -> int:
        """
        Returns the output dimension of this descriptor
        """
        return self.filter_neuron[-1] * self.n_axis_neuron

    def get_dim_rot_mat_1(self) -> int:
        """
        Returns the first dimension of the rotation matrix. The rotation is of shape dim_1 x 3
        """
        return self.filter_neuron[-1]

    def get_nlist(self) -> Tuple[tf.Tensor, tf.Tensor, List[int], List[int]]:
        """
        Returns
        -------
        nlist
                Neighbor list
        rij
                The relative distance between the neighbor and the center atom.
        sel_a
                The number of neighbors with full information
        sel_r
                The number of neighbors with only radial information
        """
        return self.nlist, self.rij, self.sel_a, self.sel_r

    def compute_input_stats(self, data_coord: list, data_box: list,
                            data_atype: list, natoms_vec: list, mesh: list,
                            input_dict: dict) -> None:
        """
        Compute the statisitcs (avg and std) of the training data. The input will be normalized by the statistics.
        
        Parameters
        ----------
        data_coord
                The coordinates. Can be generated by deepmd.model.make_stat_input
        data_box
                The box. Can be generated by deepmd.model.make_stat_input
        data_atype
                The atom types. Can be generated by deepmd.model.make_stat_input
        natoms_vec
                The vector for the number of atoms of the system and different types of atoms. Can be generated by deepmd.model.make_stat_input
        mesh
                The mesh for neighbor searching. Can be generated by deepmd.model.make_stat_input
        input_dict
                Dictionary for additional input
        """
        all_davg = []
        all_dstd = []
        if True:
            sumr = []
            suma = []
            sumn = []
            sumr2 = []
            suma2 = []
            for cc, bb, tt, nn, mm in zip(data_coord, data_box, data_atype,
                                          natoms_vec, mesh):
                sysr,sysr2,sysa,sysa2,sysn \
                    = self._compute_dstats_sys_smth(cc,bb,tt,nn,mm)
                sumr.append(sysr)
                suma.append(sysa)
                sumn.append(sysn)
                sumr2.append(sysr2)
                suma2.append(sysa2)
            sumr = np.sum(sumr, axis=0)
            suma = np.sum(suma, axis=0)
            sumn = np.sum(sumn, axis=0)
            sumr2 = np.sum(sumr2, axis=0)
            suma2 = np.sum(suma2, axis=0)
            for type_i in range(self.ntypes):
                davgunit = [sumr[type_i] / (sumn[type_i] + 1e-15), 0, 0, 0]
                dstdunit = [
                    self._compute_std(sumr2[type_i], sumr[type_i],
                                      sumn[type_i]),
                    self._compute_std(suma2[type_i], suma[type_i],
                                      sumn[type_i]),
                    self._compute_std(suma2[type_i], suma[type_i],
                                      sumn[type_i]),
                    self._compute_std(suma2[type_i], suma[type_i],
                                      sumn[type_i])
                ]
                davg = np.tile(davgunit, self.ndescrpt // 4)
                dstd = np.tile(dstdunit, self.ndescrpt // 4)
                all_davg.append(davg)
                all_dstd.append(dstd)

        if not self.set_davg_zero:
            self.davg = np.array(all_davg)
        self.dstd = np.array(all_dstd)

    def enable_compression(
        self,
        min_nbor_dist: float,
        model_file: str = 'frozon_model.pb',
        table_extrapolate: float = 5,
        table_stride_1: float = 0.01,
        table_stride_2: float = 0.1,
        check_frequency: int = -1,
        suffix: str = "",
    ) -> None:
        """
        Reveive the statisitcs (distance, max_nbor_size and env_mat_range) of the training data.
        
        Parameters
        ----------
        min_nbor_dist
                The nearest distance between atoms
        model_file
                The original frozen model, which will be compressed by the program
        table_extrapolate
                The scale of model extrapolation
        table_stride_1
                The uniform stride of the first table
        table_stride_2
                The uniform stride of the second table
        check_frequency
                The overflow check frequency
        suffix : str, optional
                The suffix of the scope
        """
        # do some checks before the mocel compression process
        assert (
            not self.filter_resnet_dt
        ), "Model compression error: descriptor resnet_dt must be false!"
        for tt in self.exclude_types:
            if (tt[0] not in range(self.ntypes)) or (tt[1] not in range(
                    self.ntypes)):
                raise RuntimeError("exclude types" + str(tt) +
                                   " must within the number of atomic types " +
                                   str(self.ntypes) + "!")
        if (self.ntypes * self.ntypes - len(self.exclude_types) == 0):
            raise RuntimeError(
                "empty embedding-net are not supported in model compression!")

        for ii in range(len(self.filter_neuron) - 1):
            if self.filter_neuron[ii] * 2 != self.filter_neuron[ii + 1]:
                raise NotImplementedError(
                    "Model Compression error: descriptor neuron [%s] is not supported by model compression! "
                    "The size of the next layer of the neural network must be twice the size of the previous layer."
                    % ','.join([str(item) for item in self.filter_neuron]))

        self.compress = True
        self.table = DPTabulate(self,
                                self.filter_neuron,
                                model_file,
                                self.type_one_side,
                                self.exclude_types,
                                self.compress_activation_fn,
                                suffix=suffix)
        self.table_config = [
            table_extrapolate, table_stride_1, table_stride_2, check_frequency
        ]
        self.lower, self.upper \
            = self.table.build(min_nbor_dist,
                               table_extrapolate,
                               table_stride_1,
                               table_stride_2)

        graph, _ = load_graph_def(model_file)
        self.davg = get_tensor_by_name_from_graph(
            graph, 'descrpt_attr%s/t_avg' % suffix)
        self.dstd = get_tensor_by_name_from_graph(
            graph, 'descrpt_attr%s/t_std' % suffix)

    def enable_mixed_precision(self, mixed_prec: dict = None) -> None:
        """
        Reveive the mixed precision setting.

        Parameters
        ----------
        mixed_prec
                The mixed precision setting used in the embedding net
        """
        self.mixed_prec = mixed_prec
        self.filter_precision = get_precision(mixed_prec['output_prec'])

    def build(self,
              coord_: tf.Tensor,
              atype_: tf.Tensor,
              natoms: tf.Tensor,
              box_: tf.Tensor,
              mesh: tf.Tensor,
              input_dict: dict,
              reuse: bool = None,
              suffix: str = '') -> tf.Tensor:
        """
        Build the computational graph for the descriptor

        Parameters
        ----------
        coord_
                The coordinate of atoms
        atype_
                The type of atoms
        natoms
                The number of atoms. This tensor has the length of Ntypes + 2
                natoms[0]: number of local atoms
                natoms[1]: total number of atoms held by this processor
                natoms[i]: 2 <= i < Ntypes+2, number of type i atoms
        mesh
                For historical reasons, only the length of the Tensor matters.
                if size of mesh == 6, pbc is assumed. 
                if size of mesh == 0, no-pbc is assumed. 
        input_dict
                Dictionary for additional inputs
        reuse
                The weights in the networks should be reused when get the variable.
        suffix
                Name suffix to identify this descriptor

        Returns
        -------
        descriptor
                The output descriptor
        """
        davg = self.davg
        dstd = self.dstd
        with tf.variable_scope('descrpt_attr' + suffix, reuse=reuse):
            if davg is None:
                davg = np.zeros([self.ntypes, self.ndescrpt])
            if dstd is None:
                dstd = np.ones([self.ntypes, self.ndescrpt])
            t_rcut = tf.constant(np.max([self.rcut_r, self.rcut_a]),
                                 name='rcut',
                                 dtype=GLOBAL_TF_FLOAT_PRECISION)
            t_ntypes = tf.constant(self.ntypes, name='ntypes', dtype=tf.int32)
            t_ndescrpt = tf.constant(self.ndescrpt,
                                     name='ndescrpt',
                                     dtype=tf.int32)
            t_sel = tf.constant(self.sel_a, name='sel', dtype=tf.int32)
            t_original_sel = tf.constant(self.original_sel if self.original_sel
                                         is not None else self.sel_a,
                                         name='original_sel',
                                         dtype=tf.int32)
            self.t_avg = tf.get_variable(
                't_avg',
                davg.shape,
                dtype=GLOBAL_TF_FLOAT_PRECISION,
                trainable=False,
                initializer=tf.constant_initializer(davg))
            self.t_std = tf.get_variable(
                't_std',
                dstd.shape,
                dtype=GLOBAL_TF_FLOAT_PRECISION,
                trainable=False,
                initializer=tf.constant_initializer(dstd))

        with tf.control_dependencies([t_sel, t_original_sel]):
            coord = tf.reshape(coord_, [-1, natoms[1] * 3])
        box = tf.reshape(box_, [-1, 9])
        atype = tf.reshape(atype_, [-1, natoms[1]])

        self.descrpt, self.descrpt_deriv, self.rij, self.nlist \
            = op_module.prod_env_mat_a (coord,
                                       atype,
                                       natoms,
                                       box,
                                       mesh,
                                       self.t_avg,
                                       self.t_std,
                                       rcut_a = self.rcut_a,
                                       rcut_r = self.rcut_r,
                                       rcut_r_smth = self.rcut_r_smth,
                                       sel_a = self.sel_a,
                                       sel_r = self.sel_r)
        # only used when tensorboard was set as true
        tf.summary.histogram('descrpt', self.descrpt)
        tf.summary.histogram('rij', self.rij)
        tf.summary.histogram('nlist', self.nlist)

        self.descrpt_reshape = tf.reshape(self.descrpt, [-1, self.ndescrpt])
        self._identity_tensors(suffix=suffix)

        self.dout, self.qmat = self._pass_filter(self.descrpt_reshape,
                                                 atype,
                                                 natoms,
                                                 input_dict,
                                                 suffix=suffix,
                                                 reuse=reuse,
                                                 trainable=self.trainable)

        # only used when tensorboard was set as true
        tf.summary.histogram('embedding_net_output', self.dout)
        return self.dout

    def get_rot_mat(self) -> tf.Tensor:
        """
        Get rotational matrix
        """
        return self.qmat

    def prod_force_virial(
            self, atom_ener: tf.Tensor,
            natoms: tf.Tensor) -> Tuple[tf.Tensor, tf.Tensor, tf.Tensor]:
        """
        Compute force and virial

        Parameters
        ----------
        atom_ener
                The atomic energy
        natoms
                The number of atoms. This tensor has the length of Ntypes + 2
                natoms[0]: number of local atoms
                natoms[1]: total number of atoms held by this processor
                natoms[i]: 2 <= i < Ntypes+2, number of type i atoms

        Returns
        -------
        force
                The force on atoms
        virial
                The total virial
        atom_virial
                The atomic virial
        """
        [net_deriv] = tf.gradients(atom_ener, self.descrpt_reshape)
        tf.summary.histogram('net_derivative', net_deriv)
        net_deriv_reshape = tf.reshape(net_deriv,
                                       [-1, natoms[0] * self.ndescrpt])
        force \
            = op_module.prod_force_se_a (net_deriv_reshape,
                                          self.descrpt_deriv,
                                          self.nlist,
                                          natoms,
                                          n_a_sel = self.nnei_a,
                                          n_r_sel = self.nnei_r)
        virial, atom_virial \
            = op_module.prod_virial_se_a (net_deriv_reshape,
                                           self.descrpt_deriv,
                                           self.rij,
                                           self.nlist,
                                           natoms,
                                           n_a_sel = self.nnei_a,
                                           n_r_sel = self.nnei_r)
        tf.summary.histogram('force', force)
        tf.summary.histogram('virial', virial)
        tf.summary.histogram('atom_virial', atom_virial)

        return force, virial, atom_virial

    def _pass_filter(self,
                     inputs,
                     atype,
                     natoms,
                     input_dict,
                     reuse=None,
                     suffix='',
                     trainable=True):
        if input_dict is not None:
            type_embedding = input_dict.get('type_embedding', None)
        else:
            type_embedding = None
        start_index = 0
        inputs = tf.reshape(inputs, [-1, self.ndescrpt * natoms[0]])
        output = []
        output_qmat = []
        if not (self.type_one_side
                and len(self.exclude_types) == 0) and type_embedding is None:
            for type_i in range(self.ntypes):
                inputs_i = tf.slice(inputs, [0, start_index * self.ndescrpt],
                                    [-1, natoms[2 + type_i] * self.ndescrpt])
                inputs_i = tf.reshape(inputs_i, [-1, self.ndescrpt])
                if self.type_one_side:
                    # reuse NN parameters for all types to support type_one_side along with exclude_types
                    reuse = tf.AUTO_REUSE
                    filter_name = 'filter_type_all' + suffix
                else:
                    filter_name = 'filter_type_' + str(type_i) + suffix
                layer, qmat = self._filter(
                    inputs_i,
                    type_i,
                    name=filter_name,
                    natoms=natoms,
                    reuse=reuse,
                    trainable=trainable,
                    activation_fn=self.filter_activation_fn)
                layer = tf.reshape(layer, [
                    tf.shape(inputs)[0],
                    natoms[2 + type_i] * self.get_dim_out()
                ])
                qmat = tf.reshape(qmat, [
                    tf.shape(inputs)[0],
                    natoms[2 + type_i] * self.get_dim_rot_mat_1() * 3
                ])
                output.append(layer)
                output_qmat.append(qmat)
                start_index += natoms[2 + type_i]
        else:
            inputs_i = inputs
            inputs_i = tf.reshape(inputs_i, [-1, self.ndescrpt])
            type_i = -1
            layer, qmat = self._filter(inputs_i,
                                       type_i,
                                       name='filter_type_all' + suffix,
                                       natoms=natoms,
                                       reuse=reuse,
                                       trainable=trainable,
                                       activation_fn=self.filter_activation_fn,
                                       type_embedding=type_embedding)
            layer = tf.reshape(
                layer, [tf.shape(inputs)[0], natoms[0] * self.get_dim_out()])
            qmat = tf.reshape(qmat, [
                tf.shape(inputs)[0], natoms[0] * self.get_dim_rot_mat_1() * 3
            ])
            output.append(layer)
            output_qmat.append(qmat)
        output = tf.concat(output, axis=1)
        output_qmat = tf.concat(output_qmat, axis=1)
        return output, output_qmat

    def _compute_dstats_sys_smth(self, data_coord, data_box, data_atype,
                                 natoms_vec, mesh):
        dd_all \
            = run_sess(self.sub_sess, self.stat_descrpt,
                                feed_dict = {
                                    self.place_holders['coord']: data_coord,
                                    self.place_holders['type']: data_atype,
                                    self.place_holders['natoms_vec']: natoms_vec,
                                    self.place_holders['box']: data_box,
                                    self.place_holders['default_mesh']: mesh,
                                })
        natoms = natoms_vec
        dd_all = np.reshape(dd_all, [-1, self.ndescrpt * natoms[0]])
        start_index = 0
        sysr = []
        sysa = []
        sysn = []
        sysr2 = []
        sysa2 = []
        for type_i in range(self.ntypes):
            end_index = start_index + self.ndescrpt * natoms[2 + type_i]
            dd = dd_all[:, start_index:end_index]
            dd = np.reshape(dd, [-1, self.ndescrpt])
            start_index = end_index
            # compute
            dd = np.reshape(dd, [-1, 4])
            ddr = dd[:, :1]
            dda = dd[:, 1:]
            sumr = np.sum(ddr)
            suma = np.sum(dda) / 3.
            sumn = dd.shape[0]
            sumr2 = np.sum(np.multiply(ddr, ddr))
            suma2 = np.sum(np.multiply(dda, dda)) / 3.
            sysr.append(sumr)
            sysa.append(suma)
            sysn.append(sumn)
            sysr2.append(sumr2)
            sysa2.append(suma2)
        return sysr, sysr2, sysa, sysa2, sysn

    def _compute_std(self, sumv2, sumv, sumn):
        if sumn == 0:
            return 1e-2
        val = np.sqrt(sumv2 / sumn - np.multiply(sumv / sumn, sumv / sumn))
        if np.abs(val) < 1e-2:
            val = 1e-2
        return val

    def _concat_type_embedding(
        self,
        xyz_scatter,
        nframes,
        natoms,
        type_embedding,
    ):
        '''Concatenate `type_embedding` of neighbors and `xyz_scatter`.
        If not self.type_one_side, concatenate `type_embedding` of center atoms as well.

        Parameters
        ----------
        xyz_scatter:
                shape is [nframes*natoms[0]*self.nnei, 1]
        nframes:
                shape is []
        natoms:
                shape is [1+1+self.ntypes]
        type_embedding:
                shape is [self.ntypes, Y] where Y=jdata['type_embedding']['neuron'][-1]

        Returns
        -------
            embedding:
                environment of each atom represented by embedding.
        '''
        te_out_dim = type_embedding.get_shape().as_list()[-1]
        nei_embed = tf.nn.embedding_lookup(
            type_embedding,
            tf.cast(self.nei_type,
                    dtype=tf.int32))  # shape is [self.nnei, 1+te_out_dim]
        nei_embed = tf.tile(
            nei_embed,
            (nframes * natoms[0],
             1))  # shape is [nframes*natoms[0]*self.nnei, te_out_dim]
        nei_embed = tf.reshape(nei_embed, [-1, te_out_dim])
        embedding_input = tf.concat(
            [xyz_scatter, nei_embed],
            1)  # shape is [nframes*natoms[0]*self.nnei, 1+te_out_dim]
        if not self.type_one_side:
            atm_embed = embed_atom_type(
                self.ntypes, natoms,
                type_embedding)  # shape is [natoms[0], te_out_dim]
            atm_embed = tf.tile(
                atm_embed,
                (nframes, self.nnei
                 ))  # shape is [nframes*natoms[0], self.nnei*te_out_dim]
            atm_embed = tf.reshape(
                atm_embed,
                [-1, te_out_dim
                 ])  # shape is [nframes*natoms[0]*self.nnei, te_out_dim]
            embedding_input = tf.concat(
                [embedding_input, atm_embed], 1
            )  # shape is [nframes*natoms[0]*self.nnei, 1+te_out_dim+te_out_dim]
        return embedding_input

    def _filter_lower(
        self,
        type_i,
        type_input,
        start_index,
        incrs_index,
        inputs,
        nframes,
        natoms,
        type_embedding=None,
        is_exclude=False,
        activation_fn=None,
        bavg=0.0,
        stddev=1.0,
        trainable=True,
        suffix='',
    ):
        """
        input env matrix, returns R.G
        """
        outputs_size = [1] + self.filter_neuron
        # cut-out inputs
        # with natom x (nei_type_i x 4)
        inputs_i = tf.slice(inputs, [0, start_index * 4],
                            [-1, incrs_index * 4])
        shape_i = inputs_i.get_shape().as_list()
        natom = tf.shape(inputs_i)[0]
        # with (natom x nei_type_i) x 4
        inputs_reshape = tf.reshape(inputs_i, [-1, 4])
        # with (natom x nei_type_i) x 1
        xyz_scatter = tf.reshape(tf.slice(inputs_reshape, [0, 0], [-1, 1]),
                                 [-1, 1])
        if type_embedding is not None:
            xyz_scatter = self._concat_type_embedding(xyz_scatter, nframes,
                                                      natoms, type_embedding)
            if self.compress:
                raise RuntimeError(
                    'compression of type embedded descriptor is not supported at the moment'
                )
        # natom x 4 x outputs_size
        if self.compress and (not is_exclude):
            info = [
                self.lower, self.upper, self.upper * self.table_config[0],
                self.table_config[1], self.table_config[2],
                self.table_config[3]
            ]
            if self.type_one_side:
                net = 'filter_-1_net_' + str(type_i)
            else:
                net = 'filter_' + str(type_input) + '_net_' + str(type_i)
            return op_module.tabulate_fusion_se_a(
                tf.cast(self.table.data[net], self.filter_precision),
                info,
                xyz_scatter,
                tf.reshape(inputs_i, [natom, shape_i[1] // 4, 4]),
                last_layer_size=outputs_size[-1])
        else:
            if (not is_exclude):
                # with (natom x nei_type_i) x out_size
                xyz_scatter = embedding_net(
                    xyz_scatter,
                    self.filter_neuron,
                    self.filter_precision,
                    activation_fn=activation_fn,
                    resnet_dt=self.filter_resnet_dt,
                    name_suffix=suffix,
                    stddev=stddev,
                    bavg=bavg,
                    seed=self.seed,
                    trainable=trainable,
                    uniform_seed=self.uniform_seed,
                    initial_variables=self.embedding_net_variables,
                    mixed_prec=self.mixed_prec)
                if (not self.uniform_seed) and (self.seed is not None):
                    self.seed += self.seed_shift
            else:
                # we can safely return the final xyz_scatter filled with zero directly
                return tf.cast(tf.fill((natom, 4, outputs_size[-1]), 0.),
                               self.filter_precision)
            # natom x nei_type_i x out_size
            xyz_scatter = tf.reshape(xyz_scatter,
                                     (-1, shape_i[1] // 4, outputs_size[-1]))
            # When using tf.reshape(inputs_i, [-1, shape_i[1]//4, 4]) below
            # [588 24] -> [588 6 4] correct
            # but if sel is zero
            # [588 0] -> [147 0 4] incorrect; the correct one is [588 0 4]
            # So we need to explicitly assign the shape to tf.shape(inputs_i)[0] instead of -1
            # natom x 4 x outputs_size
            return tf.matmul(tf.reshape(inputs_i, [natom, shape_i[1] // 4, 4]),
                             xyz_scatter,
                             transpose_a=True)

    @cast_precision
    def _filter(self,
                inputs,
                type_input,
                natoms,
                type_embedding=None,
                activation_fn=tf.nn.tanh,
                stddev=1.0,
                bavg=0.0,
                name='linear',
                reuse=None,
                trainable=True):
        nframes = tf.shape(tf.reshape(inputs,
                                      [-1, natoms[0], self.ndescrpt]))[0]
        # natom x (nei x 4)
        shape = inputs.get_shape().as_list()
        outputs_size = [1] + self.filter_neuron
        outputs_size_2 = self.n_axis_neuron
        all_excluded = all([(type_input, type_i) in self.exclude_types
                            for type_i in range(self.ntypes)])
        if all_excluded:
            # all types are excluded so result and qmat should be zeros
            # we can safaly return a zero matrix...
            # See also https://stackoverflow.com/a/34725458/9567349
            # result: natom x outputs_size x outputs_size_2
            # qmat: natom x outputs_size x 3
            natom = tf.shape(inputs)[0]
            result = tf.cast(
                tf.fill((natom, outputs_size_2, outputs_size[-1]), 0.),
                GLOBAL_TF_FLOAT_PRECISION)
            qmat = tf.cast(tf.fill((natom, outputs_size[-1], 3), 0.),
                           GLOBAL_TF_FLOAT_PRECISION)
            return result, qmat

        with tf.variable_scope(name, reuse=reuse):
            start_index = 0
            type_i = 0
            # natom x 4 x outputs_size
            if type_embedding is None:
                rets = []
                for type_i in range(self.ntypes):
                    ret = self._filter_lower(type_i,
                                             type_input,
                                             start_index,
                                             self.sel_a[type_i],
                                             inputs,
                                             nframes,
                                             natoms,
                                             type_embedding=type_embedding,
                                             is_exclude=(type_input, type_i)
                                             in self.exclude_types,
                                             activation_fn=activation_fn,
                                             stddev=stddev,
                                             bavg=bavg,
                                             trainable=trainable,
                                             suffix="_" + str(type_i))
                    if (type_input, type_i) not in self.exclude_types:
                        # add zero is meaningless; skip
                        rets.append(ret)
                    start_index += self.sel_a[type_i]
                # faster to use accumulate_n than multiple add
                xyz_scatter_1 = tf.accumulate_n(rets)
            else:
                xyz_scatter_1 = self._filter_lower(
                    type_i,
                    type_input,
                    start_index,
                    np.cumsum(self.sel_a)[-1],
                    inputs,
                    nframes,
                    natoms,
                    type_embedding=type_embedding,
                    is_exclude=False,
                    activation_fn=activation_fn,
                    stddev=stddev,
                    bavg=bavg,
                    trainable=trainable)
            # natom x nei x outputs_size
            # xyz_scatter = tf.concat(xyz_scatter_total, axis=1)
            # natom x nei x 4
            # inputs_reshape = tf.reshape(inputs, [-1, shape[1]//4, 4])
            # natom x 4 x outputs_size
            # xyz_scatter_1 = tf.matmul(inputs_reshape, xyz_scatter, transpose_a = True)
            if self.original_sel is None:
                # shape[1] = nnei * 4
                nnei = shape[1] / 4
            else:
                nnei = tf.cast(
                    tf.Variable(np.sum(self.original_sel),
                                dtype=tf.int32,
                                trainable=False,
                                name="nnei"), self.filter_precision)
            xyz_scatter_1 = xyz_scatter_1 / nnei
            # natom x 4 x outputs_size_2
            xyz_scatter_2 = tf.slice(xyz_scatter_1, [0, 0, 0],
                                     [-1, -1, outputs_size_2])
            # # natom x 3 x outputs_size_2
            # qmat = tf.slice(xyz_scatter_2, [0,1,0], [-1, 3, -1])
            # natom x 3 x outputs_size_1
            qmat = tf.slice(xyz_scatter_1, [0, 1, 0], [-1, 3, -1])
            # natom x outputs_size_1 x 3
            qmat = tf.transpose(qmat, perm=[0, 2, 1])
            # natom x outputs_size x outputs_size_2
            result = tf.matmul(xyz_scatter_1, xyz_scatter_2, transpose_a=True)
            # natom x (outputs_size x outputs_size_2)
            result = tf.reshape(result,
                                [-1, outputs_size_2 * outputs_size[-1]])

        return result, qmat

    def init_variables(
        self,
        graph: tf.Graph,
        graph_def: tf.GraphDef,
        suffix: str = "",
    ) -> None:
        """
        Init the embedding net variables with the given dict

        Parameters
        ----------
        graph : tf.Graph
            The input frozen model graph
        graph_def : tf.GraphDef
            The input frozen model graph_def
        suffix : str, optional
            The suffix of the scope
        """
        super().init_variables(graph=graph, graph_def=graph_def, suffix=suffix)
        try:
            self.original_sel = get_tensor_by_name_from_graph(
                graph, 'descrpt_attr%s/original_sel' % suffix)
        except GraphWithoutTensorError:
            # original_sel is not restored in old graphs, assume sel never changed before
            pass
        # check sel == original sel?
        try:
            sel = get_tensor_by_name_from_graph(graph,
                                                'descrpt_attr%s/sel' % suffix)
        except GraphWithoutTensorError:
            # sel is not restored in old graphs
            pass
        else:
            if not np.array_equal(np.array(self.sel_a), sel):
                if not self.set_davg_zero:
                    raise RuntimeError(
                        "Adjusting sel is only supported when `set_davg_zero` is true!"
                    )
                # as set_davg_zero, self.davg is safely zero
                self.davg = np.zeros([self.ntypes, self.ndescrpt
                                      ]).astype(GLOBAL_NP_FLOAT_PRECISION)
                new_dstd = np.ones([self.ntypes, self.ndescrpt
                                    ]).astype(GLOBAL_NP_FLOAT_PRECISION)
                # shape of davg and dstd is (ntypes, ndescrpt), ndescrpt = 4*sel
                n_descpt = np.array(self.sel_a) * 4
                n_descpt_old = np.array(sel) * 4
                end_index = np.cumsum(n_descpt)
                end_index_old = np.cumsum(n_descpt_old)
                start_index = np.roll(end_index, 1)
                start_index[0] = 0
                start_index_old = np.roll(end_index_old, 1)
                start_index_old[0] = 0

                for nn, oo, ii, jj in zip(n_descpt, n_descpt_old, start_index,
                                          start_index_old):
                    if nn < oo:
                        # new size is smaller, copy part of std
                        new_dstd[:, ii:ii + nn] = self.dstd[:, jj:jj + nn]
                    else:
                        # new size is larger, copy all, the rest remains 1
                        new_dstd[:, ii:ii + oo] = self.dstd[:, jj:jj + oo]
                self.dstd = new_dstd
                if self.original_sel is None:
                    self.original_sel = sel
Esempio n. 4
0
class DescrptSeR(DescrptSe):
    """DeepPot-SE constructed from radial information of atomic configurations.
    
    The embedding takes the distance between atoms as input.

    Parameters
    ----------
    rcut
            The cut-off radius
    rcut_smth
            From where the environment matrix should be smoothed
    sel : list[str]
            sel[i] specifies the maxmum number of type i atoms in the cut-off radius
    neuron : list[int]
            Number of neurons in each hidden layers of the embedding net
    resnet_dt
            Time-step `dt` in the resnet construction:
            y = x + dt * \phi (Wx + b)
    trainable
            If the weights of embedding net are trainable.
    seed
            Random seed for initializing the network parameters.
    type_one_side
            Try to build N_types embedding nets. Otherwise, building N_types^2 embedding nets
    exclude_types : List[List[int]]
            The excluded pairs of types which have no interaction with each other.
            For example, `[[0, 1]]` means no interaction between type 0 and type 1.
    activation_function
            The activation function in the embedding net. Supported options are {0}
    precision
            The precision of the embedding net parameters. Supported options are {1}
    uniform_seed
            Only for the purpose of backward compatibility, retrieves the old behavior of using the random seed
    """
    @docstring_parameter(list_to_doc(ACTIVATION_FN_DICT.keys()),
                         list_to_doc(PRECISION_DICT.keys()))
    def __init__(self,
                 rcut: float,
                 rcut_smth: float,
                 sel: List[str],
                 neuron: List[int] = [24, 48, 96],
                 resnet_dt: bool = False,
                 trainable: bool = True,
                 seed: int = None,
                 type_one_side: bool = True,
                 exclude_types: List[List[int]] = [],
                 set_davg_zero: bool = False,
                 activation_function: str = 'tanh',
                 precision: str = 'default',
                 uniform_seed: bool = False) -> None:
        """
        Constructor
        """
        # args = ClassArg()\
        #        .add('sel',      list,   must = True) \
        #        .add('rcut',     float,  default = 6.0) \
        #        .add('rcut_smth',float,  default = 0.5) \
        #        .add('neuron',   list,   default = [10, 20, 40]) \
        #        .add('resnet_dt',bool,   default = False) \
        #        .add('trainable',bool,   default = True) \
        #        .add('seed',     int) \
        #        .add('type_one_side', bool, default = False) \
        #        .add('exclude_types', list, default = []) \
        #        .add('set_davg_zero', bool, default = False) \
        #        .add("activation_function", str, default = "tanh") \
        #        .add("precision",           str, default = "default")
        # class_data = args.parse(jdata)
        if rcut < rcut_smth:
            raise RuntimeError(
                "rcut_smth (%f) should be no more than rcut (%f)!" %
                (rcut_smth, rcut))
        self.sel_r = sel
        self.rcut = rcut
        self.rcut_smth = rcut_smth
        self.filter_neuron = neuron
        self.filter_resnet_dt = resnet_dt
        self.seed = seed
        self.uniform_seed = uniform_seed
        self.seed_shift = embedding_net_rand_seed_shift(self.filter_neuron)
        self.trainable = trainable
        self.filter_activation_fn = get_activation_func(activation_function)
        self.filter_precision = get_precision(precision)
        exclude_types = exclude_types
        self.exclude_types = set()
        for tt in exclude_types:
            assert (len(tt) == 2)
            self.exclude_types.add((tt[0], tt[1]))
            self.exclude_types.add((tt[1], tt[0]))
        self.set_davg_zero = set_davg_zero
        self.type_one_side = type_one_side

        # descrpt config
        self.sel_a = [0 for ii in range(len(self.sel_r))]
        self.ntypes = len(self.sel_r)
        # numb of neighbors and numb of descrptors
        self.nnei_a = np.cumsum(self.sel_a)[-1]
        self.nnei_r = np.cumsum(self.sel_r)[-1]
        self.nnei = self.nnei_a + self.nnei_r
        self.ndescrpt_a = self.nnei_a * 4
        self.ndescrpt_r = self.nnei_r * 1
        self.ndescrpt = self.nnei_r
        self.useBN = False
        self.davg = None
        self.dstd = None
        self.compress = False
        self.embedding_net_variables = None

        self.place_holders = {}
        avg_zero = np.zeros([self.ntypes,
                             self.ndescrpt]).astype(GLOBAL_NP_FLOAT_PRECISION)
        std_ones = np.ones([self.ntypes,
                            self.ndescrpt]).astype(GLOBAL_NP_FLOAT_PRECISION)
        sub_graph = tf.Graph()
        with sub_graph.as_default():
            name_pfx = 'd_ser_'
            for ii in ['coord', 'box']:
                self.place_holders[ii] = tf.placeholder(
                    GLOBAL_NP_FLOAT_PRECISION, [None, None],
                    name=name_pfx + 't_' + ii)
            self.place_holders['type'] = tf.placeholder(tf.int32, [None, None],
                                                        name=name_pfx +
                                                        't_type')
            self.place_holders['natoms_vec'] = tf.placeholder(
                tf.int32, [self.ntypes + 2], name=name_pfx + 't_natoms')
            self.place_holders['default_mesh'] = tf.placeholder(
                tf.int32, [None], name=name_pfx + 't_mesh')
            self.stat_descrpt, descrpt_deriv, rij, nlist \
                = op_module.prod_env_mat_r(self.place_holders['coord'],
                                         self.place_holders['type'],
                                         self.place_holders['natoms_vec'],
                                         self.place_holders['box'],
                                         self.place_holders['default_mesh'],
                                         tf.constant(avg_zero),
                                         tf.constant(std_ones),
                                         rcut = self.rcut,
                                         rcut_smth = self.rcut_smth,
                                         sel = self.sel_r)
            self.sub_sess = tf.Session(graph=sub_graph,
                                       config=default_tf_session_config)

    def get_rcut(self):
        """
        Returns the cut-off radisu
        """
        return self.rcut

    def get_ntypes(self):
        """
        Returns the number of atom types
        """
        return self.ntypes

    def get_dim_out(self):
        """
        Returns the output dimension of this descriptor
        """
        return self.filter_neuron[-1]

    def get_nlist(self):
        """
        Returns
        -------
        nlist
                Neighbor list
        rij
                The relative distance between the neighbor and the center atom.
        sel_a
                The number of neighbors with full information
        sel_r
                The number of neighbors with only radial information
        """
        return self.nlist, self.rij, self.sel_a, self.sel_r

    def compute_input_stats(self, data_coord, data_box, data_atype, natoms_vec,
                            mesh, input_dict):
        """
        Compute the statisitcs (avg and std) of the training data. The input will be normalized by the statistics.
        
        Parameters
        ----------
        data_coord
                The coordinates. Can be generated by deepmd.model.make_stat_input
        data_box
                The box. Can be generated by deepmd.model.make_stat_input
        data_atype
                The atom types. Can be generated by deepmd.model.make_stat_input
        natoms_vec
                The vector for the number of atoms of the system and different types of atoms. Can be generated by deepmd.model.make_stat_input
        mesh
                The mesh for neighbor searching. Can be generated by deepmd.model.make_stat_input
        input_dict
                Dictionary for additional input
        """
        all_davg = []
        all_dstd = []
        sumr = []
        sumn = []
        sumr2 = []
        for cc, bb, tt, nn, mm in zip(data_coord, data_box, data_atype,
                                      natoms_vec, mesh):
            sysr,sysr2,sysn \
                = self._compute_dstats_sys_se_r(cc,bb,tt,nn,mm)
            sumr.append(sysr)
            sumn.append(sysn)
            sumr2.append(sysr2)
        sumr = np.sum(sumr, axis=0)
        sumn = np.sum(sumn, axis=0)
        sumr2 = np.sum(sumr2, axis=0)
        for type_i in range(self.ntypes):
            davgunit = [sumr[type_i] / sumn[type_i]]
            dstdunit = [
                self._compute_std(sumr2[type_i], sumr[type_i], sumn[type_i])
            ]
            davg = np.tile(davgunit, self.ndescrpt // 1)
            dstd = np.tile(dstdunit, self.ndescrpt // 1)
            all_davg.append(davg)
            all_dstd.append(dstd)

        if not self.set_davg_zero:
            self.davg = np.array(all_davg)
        self.dstd = np.array(all_dstd)

    def enable_compression(
        self,
        min_nbor_dist: float,
        model_file: str = 'frozon_model.pb',
        table_extrapolate: float = 5,
        table_stride_1: float = 0.01,
        table_stride_2: float = 0.1,
        check_frequency: int = -1,
        suffix: str = "",
    ) -> None:
        """
        Reveive the statisitcs (distance, max_nbor_size and env_mat_range) of the training data.

        Parameters
        ----------
        min_nbor_dist
                The nearest distance between atoms
        model_file
                The original frozen model, which will be compressed by the program
        table_extrapolate
                The scale of model extrapolation
        table_stride_1
                The uniform stride of the first table
        table_stride_2
                The uniform stride of the second table
        check_frequency
                The overflow check frequency
        suffix : str, optional
                The suffix of the scope
        """
        assert (
            not self.filter_resnet_dt
        ), "Model compression error: descriptor resnet_dt must be false!"

        for ii in range(len(self.filter_neuron) - 1):
            if self.filter_neuron[ii] * 2 != self.filter_neuron[ii + 1]:
                raise NotImplementedError(
                    "Model Compression error: descriptor neuron [%s] is not supported by model compression! "
                    "The size of the next layer of the neural network must be twice the size of the previous layer."
                    % ','.join([str(item) for item in self.filter_neuron]))

        self.compress = True
        self.table = DPTabulate(self,
                                self.filter_neuron,
                                model_file,
                                activation_fn=self.filter_activation_fn,
                                suffix=suffix)
        self.table_config = [
            table_extrapolate, table_stride_1, table_stride_2, check_frequency
        ]
        self.lower, self.upper \
            = self.table.build(min_nbor_dist,
                               table_extrapolate,
                               table_stride_1,
                               table_stride_2)

        graph, _ = load_graph_def(model_file)
        self.davg = get_tensor_by_name_from_graph(
            graph, 'descrpt_attr%s/t_avg' % suffix)
        self.dstd = get_tensor_by_name_from_graph(
            graph, 'descrpt_attr%s/t_std' % suffix)

    def build(self,
              coord_: tf.Tensor,
              atype_: tf.Tensor,
              natoms: tf.Tensor,
              box_: tf.Tensor,
              mesh: tf.Tensor,
              input_dict: dict,
              reuse: bool = None,
              suffix: str = '') -> tf.Tensor:
        """
        Build the computational graph for the descriptor

        Parameters
        ----------
        coord_
                The coordinate of atoms
        atype_
                The type of atoms
        natoms
                The number of atoms. This tensor has the length of Ntypes + 2
                natoms[0]: number of local atoms
                natoms[1]: total number of atoms held by this processor
                natoms[i]: 2 <= i < Ntypes+2, number of type i atoms
        mesh
                For historical reasons, only the length of the Tensor matters.
                if size of mesh == 6, pbc is assumed. 
                if size of mesh == 0, no-pbc is assumed. 
        input_dict
                Dictionary for additional inputs
        reuse
                The weights in the networks should be reused when get the variable.
        suffix
                Name suffix to identify this descriptor

        Returns
        -------
        descriptor
                The output descriptor
        """
        davg = self.davg
        dstd = self.dstd
        with tf.variable_scope('descrpt_attr' + suffix, reuse=reuse):
            if davg is None:
                davg = np.zeros([self.ntypes, self.ndescrpt])
            if dstd is None:
                dstd = np.ones([self.ntypes, self.ndescrpt])
            t_rcut = tf.constant(self.rcut,
                                 name='rcut',
                                 dtype=GLOBAL_TF_FLOAT_PRECISION)
            t_ntypes = tf.constant(self.ntypes, name='ntypes', dtype=tf.int32)
            t_ndescrpt = tf.constant(self.ndescrpt,
                                     name='ndescrpt',
                                     dtype=tf.int32)
            t_sel = tf.constant(self.sel_a, name='sel', dtype=tf.int32)
            self.t_avg = tf.get_variable(
                't_avg',
                davg.shape,
                dtype=GLOBAL_TF_FLOAT_PRECISION,
                trainable=False,
                initializer=tf.constant_initializer(davg))
            self.t_std = tf.get_variable(
                't_std',
                dstd.shape,
                dtype=GLOBAL_TF_FLOAT_PRECISION,
                trainable=False,
                initializer=tf.constant_initializer(dstd))

        coord = tf.reshape(coord_, [-1, natoms[1] * 3])
        box = tf.reshape(box_, [-1, 9])
        atype = tf.reshape(atype_, [-1, natoms[1]])

        self.descrpt, self.descrpt_deriv, self.rij, self.nlist \
            = op_module.prod_env_mat_r(coord,
                                      atype,
                                      natoms,
                                      box,
                                      mesh,
                                      self.t_avg,
                                      self.t_std,
                                      rcut = self.rcut,
                                      rcut_smth = self.rcut_smth,
                                      sel = self.sel_r)

        self.descrpt_reshape = tf.reshape(self.descrpt, [-1, self.ndescrpt])
        self._identity_tensors(suffix=suffix)

        # only used when tensorboard was set as true
        tf.summary.histogram('descrpt', self.descrpt)
        tf.summary.histogram('rij', self.rij)
        tf.summary.histogram('nlist', self.nlist)

        self.dout = self._pass_filter(self.descrpt_reshape,
                                      natoms,
                                      suffix=suffix,
                                      reuse=reuse,
                                      trainable=self.trainable)
        tf.summary.histogram('embedding_net_output', self.dout)

        return self.dout

    def prod_force_virial(
            self, atom_ener: tf.Tensor,
            natoms: tf.Tensor) -> Tuple[tf.Tensor, tf.Tensor, tf.Tensor]:
        """
        Compute force and virial

        Parameters
        ----------
        atom_ener
                The atomic energy
        natoms
                The number of atoms. This tensor has the length of Ntypes + 2
                natoms[0]: number of local atoms
                natoms[1]: total number of atoms held by this processor
                natoms[i]: 2 <= i < Ntypes+2, number of type i atoms

        Returns
        -------
        force
                The force on atoms
        virial
                The total virial
        atom_virial
                The atomic virial
        """
        [net_deriv] = tf.gradients(atom_ener, self.descrpt_reshape)
        tf.summary.histogram('net_derivative', net_deriv)
        net_deriv_reshape = tf.reshape(net_deriv,
                                       [-1, natoms[0] * self.ndescrpt])
        force \
            = op_module.prod_force_se_r (net_deriv_reshape,
                                         self.descrpt_deriv,
                                         self.nlist,
                                         natoms)
        virial, atom_virial \
            = op_module.prod_virial_se_r (net_deriv_reshape,
                                          self.descrpt_deriv,
                                          self.rij,
                                          self.nlist,
                                          natoms)
        tf.summary.histogram('force', force)
        tf.summary.histogram('virial', virial)
        tf.summary.histogram('atom_virial', atom_virial)

        return force, virial, atom_virial

    def _pass_filter(self,
                     inputs,
                     natoms,
                     reuse=None,
                     suffix='',
                     trainable=True):
        start_index = 0
        inputs = tf.reshape(inputs, [-1, self.ndescrpt * natoms[0]])
        output = []
        if not (self.type_one_side and len(self.exclude_types) == 0):
            for type_i in range(self.ntypes):
                inputs_i = tf.slice(inputs, [0, start_index * self.ndescrpt],
                                    [-1, natoms[2 + type_i] * self.ndescrpt])
                inputs_i = tf.reshape(inputs_i, [-1, self.ndescrpt])
                if self.type_one_side:
                    # reuse NN parameters for all types to support type_one_side along with exclude_types
                    reuse = tf.AUTO_REUSE
                    filter_name = 'filter_type_all' + suffix
                else:
                    filter_name = 'filter_type_' + str(type_i) + suffix
                layer = self._filter_r(inputs_i,
                                       type_i,
                                       name=filter_name,
                                       natoms=natoms,
                                       reuse=reuse,
                                       trainable=trainable,
                                       activation_fn=self.filter_activation_fn)
                layer = tf.reshape(layer, [
                    tf.shape(inputs)[0],
                    natoms[2 + type_i] * self.get_dim_out()
                ])
                output.append(layer)
                start_index += natoms[2 + type_i]
        else:
            inputs_i = inputs
            inputs_i = tf.reshape(inputs_i, [-1, self.ndescrpt])
            type_i = -1
            layer = self._filter_r(inputs_i,
                                   type_i,
                                   name='filter_type_all' + suffix,
                                   natoms=natoms,
                                   reuse=reuse,
                                   trainable=trainable,
                                   activation_fn=self.filter_activation_fn)
            layer = tf.reshape(
                layer, [tf.shape(inputs)[0], natoms[0] * self.get_dim_out()])
            output.append(layer)
        output = tf.concat(output, axis=1)
        return output

    def _compute_dstats_sys_se_r(self, data_coord, data_box, data_atype,
                                 natoms_vec, mesh):
        dd_all \
            = run_sess(self.sub_sess, self.stat_descrpt,
                                feed_dict = {
                                    self.place_holders['coord']: data_coord,
                                    self.place_holders['type']: data_atype,
                                    self.place_holders['natoms_vec']: natoms_vec,
                                    self.place_holders['box']: data_box,
                                    self.place_holders['default_mesh']: mesh,
                                })
        natoms = natoms_vec
        dd_all = np.reshape(dd_all, [-1, self.ndescrpt * natoms[0]])
        start_index = 0
        sysr = []
        sysn = []
        sysr2 = []
        for type_i in range(self.ntypes):
            end_index = start_index + self.ndescrpt * natoms[2 + type_i]
            dd = dd_all[:, start_index:end_index]
            dd = np.reshape(dd, [-1, self.ndescrpt])
            start_index = end_index
            # compute
            dd = np.reshape(dd, [-1, 1])
            ddr = dd[:, :1]
            sumr = np.sum(ddr)
            sumn = dd.shape[0]
            sumr2 = np.sum(np.multiply(ddr, ddr))
            sysr.append(sumr)
            sysn.append(sumn)
            sysr2.append(sumr2)
        return sysr, sysr2, sysn

    def _compute_std(self, sumv2, sumv, sumn):
        val = np.sqrt(sumv2 / sumn - np.multiply(sumv / sumn, sumv / sumn))
        if np.abs(val) < 1e-2:
            val = 1e-2
        return val

    @cast_precision
    def _filter_r(self,
                  inputs,
                  type_input,
                  natoms,
                  activation_fn=tf.nn.tanh,
                  stddev=1.0,
                  bavg=0.0,
                  name='linear',
                  reuse=None,
                  trainable=True):
        # natom x nei
        outputs_size = [1] + self.filter_neuron
        with tf.variable_scope(name, reuse=reuse):
            start_index = 0
            xyz_scatter_total = []
            for type_i in range(self.ntypes):
                # cut-out inputs
                # with natom x nei_type_i
                inputs_i = tf.slice(inputs, [0, start_index],
                                    [-1, self.sel_r[type_i]])
                start_index += self.sel_r[type_i]
                shape_i = inputs_i.get_shape().as_list()
                # with (natom x nei_type_i) x 1
                xyz_scatter = tf.reshape(inputs_i, [-1, 1])
                if self.compress and ((type_input, type_i)
                                      not in self.exclude_types):
                    info = [
                        self.lower, self.upper,
                        self.upper * self.table_config[0],
                        self.table_config[1], self.table_config[2],
                        self.table_config[3]
                    ]
                    net = 'filter_' + str(type_input) + '_net_' + str(type_i)
                    xyz_scatter = op_module.tabulate_fusion_se_r(
                        tf.cast(self.table.data[net], self.filter_precision),
                        info,
                        inputs_i,
                        last_layer_size=outputs_size[-1])
                elif (type_input, type_i) not in self.exclude_types:
                    xyz_scatter = embedding_net(
                        xyz_scatter,
                        self.filter_neuron,
                        self.filter_precision,
                        activation_fn=activation_fn,
                        resnet_dt=self.filter_resnet_dt,
                        name_suffix="_" + str(type_i),
                        stddev=stddev,
                        bavg=bavg,
                        seed=self.seed,
                        trainable=trainable,
                        uniform_seed=self.uniform_seed,
                        initial_variables=self.embedding_net_variables,
                    )
                    if (not self.uniform_seed) and (self.seed is not None):
                        self.seed += self.seed_shift
                    # natom x nei_type_i x out_size
                    xyz_scatter = tf.reshape(
                        xyz_scatter, (-1, shape_i[1], outputs_size[-1]))
                else:
                    natom = tf.shape(inputs)[0]
                    xyz_scatter = tf.cast(
                        tf.fill((natom, shape_i[1], outputs_size[-1]), 0.),
                        self.filter_precision)
                xyz_scatter_total.append(xyz_scatter)

            # natom x nei x outputs_size
            xyz_scatter = tf.concat(xyz_scatter_total, axis=1)
            # natom x outputs_size
            #
            res_rescale = 1. / 5.
            result = tf.reduce_mean(xyz_scatter, axis=1) * res_rescale

        return result
Esempio n. 5
0
class DescrptSeT(DescrptSe):
    """DeepPot-SE constructed from all information (both angular and radial) of atomic
    configurations.
    
    The embedding takes angles between two neighboring atoms as input.

    Parameters
    ----------
    rcut
            The cut-off radius
    rcut_smth
            From where the environment matrix should be smoothed
    sel : list[str]
            sel[i] specifies the maxmum number of type i atoms in the cut-off radius
    neuron : list[int]
            Number of neurons in each hidden layers of the embedding net
    resnet_dt
            Time-step `dt` in the resnet construction:
            y = x + dt * \phi (Wx + b)
    trainable
            If the weights of embedding net are trainable.
    seed
            Random seed for initializing the network parameters.
    set_davg_zero
            Set the shift of embedding net input to zero.
    activation_function
            The activation function in the embedding net. Supported options are {0}
    precision
            The precision of the embedding net parameters. Supported options are {1}
    uniform_seed
            Only for the purpose of backward compatibility, retrieves the old behavior of using the random seed
    """
    @docstring_parameter(list_to_doc(ACTIVATION_FN_DICT.keys()),
                         list_to_doc(PRECISION_DICT.keys()))
    def __init__(self,
                 rcut: float,
                 rcut_smth: float,
                 sel: List[str],
                 neuron: List[int] = [24, 48, 96],
                 resnet_dt: bool = False,
                 trainable: bool = True,
                 seed: int = None,
                 set_davg_zero: bool = False,
                 activation_function: str = 'tanh',
                 precision: str = 'default',
                 uniform_seed: bool = False) -> None:
        """
        Constructor
        """
        if rcut < rcut_smth:
            raise RuntimeError(
                "rcut_smth (%f) should be no more than rcut (%f)!" %
                (rcut_smth, rcut))
        self.sel_a = sel
        self.rcut_r = rcut
        self.rcut_r_smth = rcut_smth
        self.filter_neuron = neuron
        self.filter_resnet_dt = resnet_dt
        self.seed = seed
        self.uniform_seed = uniform_seed
        self.seed_shift = embedding_net_rand_seed_shift(self.filter_neuron)
        self.trainable = trainable
        self.filter_activation_fn = get_activation_func(activation_function)
        self.filter_precision = get_precision(precision)
        # self.exclude_types = set()
        # for tt in exclude_types:
        #     assert(len(tt) == 2)
        #     self.exclude_types.add((tt[0], tt[1]))
        #     self.exclude_types.add((tt[1], tt[0]))
        self.set_davg_zero = set_davg_zero

        # descrpt config
        self.sel_r = [0 for ii in range(len(self.sel_a))]
        self.ntypes = len(self.sel_a)
        assert (self.ntypes == len(self.sel_r))
        self.rcut_a = -1
        # numb of neighbors and numb of descrptors
        self.nnei_a = np.cumsum(self.sel_a)[-1]
        self.nnei_r = np.cumsum(self.sel_r)[-1]
        self.nnei = self.nnei_a + self.nnei_r
        self.ndescrpt_a = self.nnei_a * 4
        self.ndescrpt_r = self.nnei_r * 1
        self.ndescrpt = self.ndescrpt_a + self.ndescrpt_r
        self.useBN = False
        self.dstd = None
        self.davg = None
        self.compress = False
        self.embedding_net_variables = None

        self.place_holders = {}
        avg_zero = np.zeros([self.ntypes,
                             self.ndescrpt]).astype(GLOBAL_NP_FLOAT_PRECISION)
        std_ones = np.ones([self.ntypes,
                            self.ndescrpt]).astype(GLOBAL_NP_FLOAT_PRECISION)
        sub_graph = tf.Graph()
        with sub_graph.as_default():
            name_pfx = 'd_sea_'
            for ii in ['coord', 'box']:
                self.place_holders[ii] = tf.placeholder(
                    GLOBAL_NP_FLOAT_PRECISION, [None, None],
                    name=name_pfx + 't_' + ii)
            self.place_holders['type'] = tf.placeholder(tf.int32, [None, None],
                                                        name=name_pfx +
                                                        't_type')
            self.place_holders['natoms_vec'] = tf.placeholder(
                tf.int32, [self.ntypes + 2], name=name_pfx + 't_natoms')
            self.place_holders['default_mesh'] = tf.placeholder(
                tf.int32, [None], name=name_pfx + 't_mesh')
            self.stat_descrpt, descrpt_deriv, rij, nlist \
                = op_module.prod_env_mat_a(self.place_holders['coord'],
                                         self.place_holders['type'],
                                         self.place_holders['natoms_vec'],
                                         self.place_holders['box'],
                                         self.place_holders['default_mesh'],
                                         tf.constant(avg_zero),
                                         tf.constant(std_ones),
                                         rcut_a = self.rcut_a,
                                         rcut_r = self.rcut_r,
                                         rcut_r_smth = self.rcut_r_smth,
                                         sel_a = self.sel_a,
                                         sel_r = self.sel_r)
        self.sub_sess = tf.Session(graph=sub_graph,
                                   config=default_tf_session_config)

    def get_rcut(self) -> float:
        """
        Returns the cut-off radisu
        """
        return self.rcut_r

    def get_ntypes(self) -> int:
        """
        Returns the number of atom types
        """
        return self.ntypes

    def get_dim_out(self) -> int:
        """
        Returns the output dimension of this descriptor
        """
        return self.filter_neuron[-1]

    def get_nlist(self) -> Tuple[tf.Tensor, tf.Tensor, List[int], List[int]]:
        """
        Returns
        -------
        nlist
                Neighbor list
        rij
                The relative distance between the neighbor and the center atom.
        sel_a
                The number of neighbors with full information
        sel_r
                The number of neighbors with only radial information
        """
        return self.nlist, self.rij, self.sel_a, self.sel_r

    def compute_input_stats(self, data_coord: list, data_box: list,
                            data_atype: list, natoms_vec: list, mesh: list,
                            input_dict: dict) -> None:
        """
        Compute the statisitcs (avg and std) of the training data. The input will be normalized by the statistics.
        
        Parameters
        ----------
        data_coord
                The coordinates. Can be generated by deepmd.model.make_stat_input
        data_box
                The box. Can be generated by deepmd.model.make_stat_input
        data_atype
                The atom types. Can be generated by deepmd.model.make_stat_input
        natoms_vec
                The vector for the number of atoms of the system and different types of atoms. Can be generated by deepmd.model.make_stat_input
        mesh
                The mesh for neighbor searching. Can be generated by deepmd.model.make_stat_input
        input_dict
                Dictionary for additional input
        """
        all_davg = []
        all_dstd = []
        if True:
            sumr = []
            suma = []
            sumn = []
            sumr2 = []
            suma2 = []
            for cc, bb, tt, nn, mm in zip(data_coord, data_box, data_atype,
                                          natoms_vec, mesh):
                sysr,sysr2,sysa,sysa2,sysn \
                    = self._compute_dstats_sys_smth(cc,bb,tt,nn,mm)
                sumr.append(sysr)
                suma.append(sysa)
                sumn.append(sysn)
                sumr2.append(sysr2)
                suma2.append(sysa2)
            sumr = np.sum(sumr, axis=0)
            suma = np.sum(suma, axis=0)
            sumn = np.sum(sumn, axis=0)
            sumr2 = np.sum(sumr2, axis=0)
            suma2 = np.sum(suma2, axis=0)
            for type_i in range(self.ntypes):
                davgunit = [sumr[type_i] / sumn[type_i], 0, 0, 0]
                dstdunit = [
                    self._compute_std(sumr2[type_i], sumr[type_i],
                                      sumn[type_i]),
                    self._compute_std(suma2[type_i], suma[type_i],
                                      sumn[type_i]),
                    self._compute_std(suma2[type_i], suma[type_i],
                                      sumn[type_i]),
                    self._compute_std(suma2[type_i], suma[type_i],
                                      sumn[type_i])
                ]
                davg = np.tile(davgunit, self.ndescrpt // 4)
                dstd = np.tile(dstdunit, self.ndescrpt // 4)
                all_davg.append(davg)
                all_dstd.append(dstd)

        if not self.set_davg_zero:
            self.davg = np.array(all_davg)
        self.dstd = np.array(all_dstd)

    def enable_compression(
        self,
        min_nbor_dist: float,
        model_file: str = 'frozon_model.pb',
        table_extrapolate: float = 5,
        table_stride_1: float = 0.01,
        table_stride_2: float = 0.1,
        check_frequency: int = -1,
        suffix: str = "",
    ) -> None:
        """
        Reveive the statisitcs (distance, max_nbor_size and env_mat_range) of the training data.

        Parameters
        ----------
        min_nbor_dist
                The nearest distance between atoms
        model_file
                The original frozen model, which will be compressed by the program
        table_extrapolate
                The scale of model extrapolation
        table_stride_1
                The uniform stride of the first table
        table_stride_2
                The uniform stride of the second table
        check_frequency
                The overflow check frequency
        suffix : str, optional
                The suffix of the scope
        """
        assert (
            not self.filter_resnet_dt
        ), "Model compression error: descriptor resnet_dt must be false!"

        for ii in range(len(self.filter_neuron) - 1):
            if self.filter_neuron[ii] * 2 != self.filter_neuron[ii + 1]:
                raise NotImplementedError(
                    "Model Compression error: descriptor neuron [%s] is not supported by model compression! "
                    "The size of the next layer of the neural network must be twice the size of the previous layer."
                    % ','.join([str(item) for item in self.filter_neuron]))

        self.compress = True
        self.table = DPTabulate(self,
                                self.filter_neuron,
                                model_file,
                                activation_fn=self.filter_activation_fn,
                                suffix=suffix)
        self.table_config = [
            table_extrapolate, table_stride_1 * 10, table_stride_2 * 10,
            check_frequency
        ]
        self.lower, self.upper \
            = self.table.build(min_nbor_dist,
                               table_extrapolate,
                               table_stride_1 * 10,
                               table_stride_2 * 10)

        graph, _ = load_graph_def(model_file)
        self.davg = get_tensor_by_name_from_graph(
            graph, 'descrpt_attr%s/t_avg' % suffix)
        self.dstd = get_tensor_by_name_from_graph(
            graph, 'descrpt_attr%s/t_std' % suffix)

    def build(self,
              coord_: tf.Tensor,
              atype_: tf.Tensor,
              natoms: tf.Tensor,
              box_: tf.Tensor,
              mesh: tf.Tensor,
              input_dict: dict,
              reuse: bool = None,
              suffix: str = '') -> tf.Tensor:
        """
        Build the computational graph for the descriptor

        Parameters
        ----------
        coord_
                The coordinate of atoms
        atype_
                The type of atoms
        natoms
                The number of atoms. This tensor has the length of Ntypes + 2
                natoms[0]: number of local atoms
                natoms[1]: total number of atoms held by this processor
                natoms[i]: 2 <= i < Ntypes+2, number of type i atoms
        mesh
                For historical reasons, only the length of the Tensor matters.
                if size of mesh == 6, pbc is assumed. 
                if size of mesh == 0, no-pbc is assumed. 
        input_dict
                Dictionary for additional inputs
        reuse
                The weights in the networks should be reused when get the variable.
        suffix
                Name suffix to identify this descriptor

        Returns
        -------
        descriptor
                The output descriptor
        """
        davg = self.davg
        dstd = self.dstd
        with tf.variable_scope('descrpt_attr' + suffix, reuse=reuse):
            if davg is None:
                davg = np.zeros([self.ntypes, self.ndescrpt])
            if dstd is None:
                dstd = np.ones([self.ntypes, self.ndescrpt])
            t_rcut = tf.constant(np.max([self.rcut_r, self.rcut_a]),
                                 name='rcut',
                                 dtype=GLOBAL_TF_FLOAT_PRECISION)
            t_ntypes = tf.constant(self.ntypes, name='ntypes', dtype=tf.int32)
            t_ndescrpt = tf.constant(self.ndescrpt,
                                     name='ndescrpt',
                                     dtype=tf.int32)
            t_sel = tf.constant(self.sel_a, name='sel', dtype=tf.int32)
            self.t_avg = tf.get_variable(
                't_avg',
                davg.shape,
                dtype=GLOBAL_TF_FLOAT_PRECISION,
                trainable=False,
                initializer=tf.constant_initializer(davg))
            self.t_std = tf.get_variable(
                't_std',
                dstd.shape,
                dtype=GLOBAL_TF_FLOAT_PRECISION,
                trainable=False,
                initializer=tf.constant_initializer(dstd))

        coord = tf.reshape(coord_, [-1, natoms[1] * 3])
        box = tf.reshape(box_, [-1, 9])
        atype = tf.reshape(atype_, [-1, natoms[1]])

        self.descrpt, self.descrpt_deriv, self.rij, self.nlist \
            = op_module.prod_env_mat_a (coord,
                                       atype,
                                       natoms,
                                       box,
                                       mesh,
                                       self.t_avg,
                                       self.t_std,
                                       rcut_a = self.rcut_a,
                                       rcut_r = self.rcut_r,
                                       rcut_r_smth = self.rcut_r_smth,
                                       sel_a = self.sel_a,
                                       sel_r = self.sel_r)

        self.descrpt_reshape = tf.reshape(self.descrpt, [-1, self.ndescrpt])
        self._identity_tensors(suffix=suffix)

        self.dout, self.qmat = self._pass_filter(self.descrpt_reshape,
                                                 atype,
                                                 natoms,
                                                 input_dict,
                                                 suffix=suffix,
                                                 reuse=reuse,
                                                 trainable=self.trainable)

        return self.dout

    def prod_force_virial(
            self, atom_ener: tf.Tensor,
            natoms: tf.Tensor) -> Tuple[tf.Tensor, tf.Tensor, tf.Tensor]:
        """
        Compute force and virial

        Parameters
        ----------
        atom_ener
                The atomic energy
        natoms
                The number of atoms. This tensor has the length of Ntypes + 2
                natoms[0]: number of local atoms
                natoms[1]: total number of atoms held by this processor
                natoms[i]: 2 <= i < Ntypes+2, number of type i atoms

        Returns
        -------
        force
                The force on atoms
        virial
                The total virial
        atom_virial
                The atomic virial
        """
        [net_deriv] = tf.gradients(atom_ener, self.descrpt_reshape)
        net_deriv_reshape = tf.reshape(net_deriv,
                                       [-1, natoms[0] * self.ndescrpt])
        force \
            = op_module.prod_force_se_a (net_deriv_reshape,
                                          self.descrpt_deriv,
                                          self.nlist,
                                          natoms,
                                          n_a_sel = self.nnei_a,
                                          n_r_sel = self.nnei_r)
        virial, atom_virial \
            = op_module.prod_virial_se_a (net_deriv_reshape,
                                           self.descrpt_deriv,
                                           self.rij,
                                           self.nlist,
                                           natoms,
                                           n_a_sel = self.nnei_a,
                                           n_r_sel = self.nnei_r)
        return force, virial, atom_virial

    def _pass_filter(self,
                     inputs,
                     atype,
                     natoms,
                     input_dict,
                     reuse=None,
                     suffix='',
                     trainable=True):
        start_index = 0
        inputs = tf.reshape(inputs, [-1, self.ndescrpt * natoms[0]])
        output = []
        output_qmat = []
        inputs_i = inputs
        inputs_i = tf.reshape(inputs_i, [-1, self.ndescrpt])
        type_i = -1
        layer, qmat = self._filter(inputs_i,
                                   type_i,
                                   name='filter_type_all' + suffix,
                                   natoms=natoms,
                                   reuse=reuse,
                                   trainable=trainable,
                                   activation_fn=self.filter_activation_fn)
        layer = tf.reshape(
            layer, [tf.shape(inputs)[0], natoms[0] * self.get_dim_out()])
        # qmat  = tf.reshape(qmat,  [tf.shape(inputs)[0], natoms[0] * self.get_dim_rot_mat_1() * 3])
        output.append(layer)
        # output_qmat.append(qmat)
        output = tf.concat(output, axis=1)
        # output_qmat = tf.concat(output_qmat, axis = 1)
        return output, None

    def _compute_dstats_sys_smth(self, data_coord, data_box, data_atype,
                                 natoms_vec, mesh):
        dd_all \
            = run_sess(self.sub_sess, self.stat_descrpt,
                                feed_dict = {
                                    self.place_holders['coord']: data_coord,
                                    self.place_holders['type']: data_atype,
                                    self.place_holders['natoms_vec']: natoms_vec,
                                    self.place_holders['box']: data_box,
                                    self.place_holders['default_mesh']: mesh,
                                })
        natoms = natoms_vec
        dd_all = np.reshape(dd_all, [-1, self.ndescrpt * natoms[0]])
        start_index = 0
        sysr = []
        sysa = []
        sysn = []
        sysr2 = []
        sysa2 = []
        for type_i in range(self.ntypes):
            end_index = start_index + self.ndescrpt * natoms[2 + type_i]
            dd = dd_all[:, start_index:end_index]
            dd = np.reshape(dd, [-1, self.ndescrpt])
            start_index = end_index
            # compute
            dd = np.reshape(dd, [-1, 4])
            ddr = dd[:, :1]
            dda = dd[:, 1:]
            sumr = np.sum(ddr)
            suma = np.sum(dda) / 3.
            sumn = dd.shape[0]
            sumr2 = np.sum(np.multiply(ddr, ddr))
            suma2 = np.sum(np.multiply(dda, dda)) / 3.
            sysr.append(sumr)
            sysa.append(suma)
            sysn.append(sumn)
            sysr2.append(sumr2)
            sysa2.append(suma2)
        return sysr, sysr2, sysa, sysa2, sysn

    def _compute_std(self, sumv2, sumv, sumn):
        val = np.sqrt(sumv2 / sumn - np.multiply(sumv / sumn, sumv / sumn))
        if np.abs(val) < 1e-2:
            val = 1e-2
        return val

    @cast_precision
    def _filter(self,
                inputs,
                type_input,
                natoms,
                activation_fn=tf.nn.tanh,
                stddev=1.0,
                bavg=0.0,
                name='linear',
                reuse=None,
                trainable=True):
        # natom x (nei x 4)
        shape = inputs.get_shape().as_list()
        outputs_size = [1] + self.filter_neuron
        with tf.variable_scope(name, reuse=reuse):
            start_index_i = 0
            result = None
            for type_i in range(self.ntypes):
                # cut-out inputs
                # with natom x (nei_type_i x 4)
                inputs_i = tf.slice(inputs, [0, start_index_i * 4],
                                    [-1, self.sel_a[type_i] * 4])
                start_index_j = start_index_i
                start_index_i += self.sel_a[type_i]
                nei_type_i = self.sel_a[type_i]
                shape_i = inputs_i.get_shape().as_list()
                assert (shape_i[1] == nei_type_i * 4)
                # with natom x nei_type_i x 4
                env_i = tf.reshape(inputs_i, [-1, nei_type_i, 4])
                # with natom x nei_type_i x 3
                env_i = tf.slice(env_i, [0, 0, 1], [-1, -1, -1])
                for type_j in range(type_i, self.ntypes):
                    # with natom x (nei_type_j x 4)
                    inputs_j = tf.slice(inputs, [0, start_index_j * 4],
                                        [-1, self.sel_a[type_j] * 4])
                    start_index_j += self.sel_a[type_j]
                    nei_type_j = self.sel_a[type_j]
                    shape_j = inputs_j.get_shape().as_list()
                    assert (shape_j[1] == nei_type_j * 4)
                    # with natom x nei_type_j x 4
                    env_j = tf.reshape(inputs_j, [-1, nei_type_j, 4])
                    # with natom x nei_type_i x 3
                    env_j = tf.slice(env_j, [0, 0, 1], [-1, -1, -1])
                    # with natom x nei_type_i x nei_type_j
                    env_ij = tf.einsum('ijm,ikm->ijk', env_i, env_j)
                    # with (natom x nei_type_i x nei_type_j)
                    ebd_env_ij = tf.reshape(env_ij, [-1, 1])
                    if self.compress:
                        info = [
                            self.lower, self.upper,
                            self.upper * self.table_config[0],
                            self.table_config[1], self.table_config[2],
                            self.table_config[3]
                        ]
                        net = 'filter_' + str(type_i) + '_net_' + str(type_j)
                        res_ij = op_module.tabulate_fusion_se_t(
                            tf.cast(self.table.data[net],
                                    self.filter_precision),
                            info,
                            ebd_env_ij,
                            env_ij,
                            last_layer_size=outputs_size[-1])
                    else:
                        # with (natom x nei_type_i x nei_type_j) x out_size
                        ebd_env_ij = embedding_net(
                            ebd_env_ij,
                            self.filter_neuron,
                            self.filter_precision,
                            activation_fn=activation_fn,
                            resnet_dt=self.filter_resnet_dt,
                            name_suffix=f"_{type_i}_{type_j}",
                            stddev=stddev,
                            bavg=bavg,
                            seed=self.seed,
                            trainable=trainable,
                            uniform_seed=self.uniform_seed,
                            initial_variables=self.embedding_net_variables,
                        )
                        if (not self.uniform_seed) and (self.seed is not None):
                            self.seed += self.seed_shift
                        # with natom x nei_type_i x nei_type_j x out_size
                        ebd_env_ij = tf.reshape(
                            ebd_env_ij,
                            [-1, nei_type_i, nei_type_j, outputs_size[-1]])
                        # with natom x out_size
                        res_ij = tf.einsum('ijk,ijkm->im', env_ij, ebd_env_ij)
                    res_ij = res_ij * (1.0 / float(nei_type_i) /
                                       float(nei_type_j))
                    if result is None:
                        result = res_ij
                    else:
                        result += res_ij
        return result, None