Esempio n. 1
0
    def _preprocess(self, image_filename, output_dir, labelling=True):
        """Resize/crop then save the training & label images

        Parameters
        ----------
        datadir : str
        image_filaname : str
        labelling : boolean

        Returns
        -------
        dict
            Key/values with the filenames and label ids
        """
        # open original images
        img_in = Image.open(image_filename)

        # resize images
        # (self.image_size*larger_size or larger_size*self.image_size)
        img_in = utils.resize_image(img_in, self.image_size)

        # crop images to get self.image_size*self.image_size dimensions
        crop_pix = np.random.randint(0, 1 + max(img_in.size) - self.image_size)
        final_img_in = utils.mono_crop_image(img_in, crop_pix)

        # save final image
        new_in_filename = os.path.join(output_dir, "images",
                                       os.path.basename(image_filename))
        final_img_in.save(new_in_filename)

        # label_filename vs label image
        if labelling:
            label_filename = image_filename.replace("images/", "labels/")
            label_filename = label_filename.replace(".jpg", ".png")
            img_out = Image.open(label_filename)
            img_out = utils.resize_image(img_out, self.image_size)
            img_out = utils.mono_crop_image(img_out, crop_pix)
            # aggregate some labels
            img_out = self.group_image_label(img_out)

            labels = utils.build_labels(img_out,
                                        self.label_ids,
                                        dataset="mapillary")
            new_out_filename = os.path.join(output_dir, "labels",
                                            os.path.basename(label_filename))
            label_out = np.array(img_out)
            final_img_out = utils.build_image_from_config(
                label_out, self.label_info)
            final_img_out.save(new_out_filename)
        else:
            new_out_filename = None
            labels = {i: 0 for i in range(self.get_nb_labels())}

        return {
            "raw_filename": image_filename,
            "image_filename": new_in_filename,
            "label_filename": new_out_filename,
            "labels": labels,
        }
Esempio n. 2
0
    def _preprocess(self, image_filename, output_dir, labelling):
        """Resize/crop then save the training & label images

        Parameters
        ----------
        image_filename : str
            Full path towards the image on the disk
        datadir : str
            Output path where preprocessed image must be saved

        Returns
        -------
        dict
            Key/values with the filenames and label ids
        """
        img_in = Image.open(image_filename)
        raw_img_size = img_in.size[0]
        result_dicts = []
        # crop tile_size*tile_size tiles into 5000*5000 raw images
        buffer_tiles = []
        for x in range(0, raw_img_size, self.tile_size):
            for y in range(0, raw_img_size, self.tile_size):
                tile = img_in.crop(
                    (x, y, x + self.tile_size, y + self.tile_size))
                tile = utils.resize_image(tile, self.image_size)
                img_id = int(
                    (raw_img_size / self.tile_size * x / self.tile_size +
                     y / self.tile_size))
                basename_decomp = os.path.splitext(
                    os.path.basename(image_filename))
                new_in_filename = (basename_decomp[0] + '_' + str(img_id) +
                                   basename_decomp[1])
                new_in_path = os.path.join(output_dir, 'images',
                                           new_in_filename)
                tile.save(new_in_path.replace(".tif", ".png"))
                result_dicts.append({
                    "raw_filename": image_filename,
                    "image_filename": new_in_path
                })

        if labelling:
            label_filename = image_filename.replace("images/", "gt/")
            img_out = Image.open(label_filename)
            buffer_tiles = []
            for x in range(0, raw_img_size, self.tile_size):
                for y in range(0, raw_img_size, self.tile_size):
                    tile = img_out.crop(
                        (x, y, x + self.tile_size, y + self.tile_size))
                    tile = utils.resize_image(tile, self.image_size)
                    img_id = int(
                        (raw_img_size / self.tile_size * x / self.tile_size +
                         y / self.tile_size))
                    basename_decomp = os.path.splitext(
                        os.path.basename(image_filename))
                    new_out_filename = (basename_decomp[0] + '_' +
                                        str(img_id) + basename_decomp[1])
                    new_out_path = os.path.join(output_dir, 'labels',
                                                new_out_filename)
                    tile.save(new_out_path.replace(".tif", ".png"))
                    labels = utils.build_labels(tile,
                                                self.label_ids,
                                                dataset='aerial')
                    result_dicts[img_id]["label_filename"] = new_out_path
                    result_dicts[img_id]["labels"] = labels

        return result_dicts
Esempio n. 3
0
    def _preprocess_for_training(self, image_filename, output_dir, nb_images):
        """Resize/crop then save the training & label images

        Parameters
        ----------
        image_filename : str
            Full path towards the image on the disk
        output_dir : str
            Output path where preprocessed image must be saved

        Returns
        -------
        dict
            Key/values with the filenames and label ids
        """
        raster = gdal.Open(image_filename)
        raw_img_width = raster.RasterXSize
        raw_img_height = raster.RasterYSize
        image_data = raster.ReadAsArray()
        image_data = np.swapaxes(image_data, 0, 2)
        result_dicts = []
        logger.info(
            "Image filename: %s, size: (%s, %s)",
            image_filename.split("/")[-1], raw_img_width, raw_img_height
        )

        label_filename = image_filename.replace("images", "gt")
        label_raster = gdal.Open(label_filename)
        labels = label_raster.ReadAsArray()

        nb_attempts = 0
        image_counter = 0
        empty_image_counter = 0
        while image_counter < nb_images and nb_attempts < 2 * nb_images:
            # randomly pick an image
            x = np.random.randint(0, raw_img_width - self.image_size)
            y = np.random.randint(0, raw_img_height - self.image_size)

            tile_data = image_data[
                x:(x + self.image_size), y:(y + self.image_size)
            ]
            tile_image = Image.fromarray(tile_data)
            mask = labels[
                x:(x + self.image_size), y:(y + self.image_size)
            ]
            label_dict = utils.build_labels(
                mask, range(self.get_nb_labels()), "aerial"
            )
            labelled_image = utils.build_image_from_config(mask, self.labels)
            if np.unique(mask).shape[0] > 1:
                tiled_results = self._serialize(
                    tile_image,
                    labelled_image,
                    label_dict,
                    image_filename,
                    output_dir,
                    x,
                    y,
                    "nw",
                )
                if tiled_results:
                    result_dicts.append(tiled_results)
                image_counter += 1
                tile_image_ne = tile_image.transpose(Image.FLIP_LEFT_RIGHT)
                labelled_image_ne = labelled_image.transpose(
                    Image.FLIP_LEFT_RIGHT
                )
                tiled_results_ne = self._serialize(
                    tile_image_ne,
                    labelled_image_ne,
                    label_dict,
                    image_filename,
                    output_dir,
                    x,
                    y,
                    "ne",
                )
                if tiled_results_ne:
                    result_dicts.append(tiled_results_ne)
                image_counter += 1
                tile_image_sw = tile_image.transpose(Image.FLIP_TOP_BOTTOM)
                labelled_image_sw = labelled_image.transpose(
                    Image.FLIP_TOP_BOTTOM
                )
                tiled_results_sw = self._serialize(
                    tile_image_sw,
                    labelled_image_sw,
                    label_dict,
                    image_filename,
                    output_dir,
                    x,
                    y,
                    "sw",
                )
                if tiled_results_sw:
                    result_dicts.append(tiled_results_sw)
                image_counter += 1
                tile_image_se = tile_image_sw.transpose(Image.FLIP_LEFT_RIGHT)
                labelled_image_se = labelled_image_sw.transpose(
                    Image.FLIP_LEFT_RIGHT
                )
                tiled_results_se = self._serialize(
                    tile_image_se,
                    labelled_image_se,
                    label_dict,
                    image_filename,
                    output_dir,
                    x,
                    y,
                    "se",
                )
                if tiled_results_se:
                    result_dicts.append(tiled_results_se)
                image_counter += 1
                del tile_image_se, tile_image_sw, tile_image_ne
                del labelled_image_se, labelled_image_sw, labelled_image_ne
            else:
                if empty_image_counter < 0.1 * nb_images:
                    tiled_results = self._serialize(
                        tile_image,
                        labelled_image,
                        label_dict,
                        image_filename,
                        output_dir,
                        x,
                        y,
                        "nw",
                    )
                    if tiled_results:
                        result_dicts.append(tiled_results)
                    image_counter += 1
                    empty_image_counter += 1
            nb_attempts += 1
        del raster
        logger.info(
            "Generate %s images after %s attempts.", image_counter, nb_attempts
        )
        return result_dicts
Esempio n. 4
0
    def _preprocess_for_training(self, image_filename, output_dir, nb_images):
        """Resize/crop then save the training & label images

        Parameters
        ----------
        image_filename : str
            Full path towards the image on the disk
        output_dir : str
            Output path where preprocessed image must be saved

        Returns
        -------
        dict
            Key/values with the filenames and label ids
        """
        raster = gdal.Open(image_filename)
        raw_img_width = raster.RasterXSize
        raw_img_height = raster.RasterYSize
        image_data = raster.ReadAsArray()
        image_data = np.swapaxes(image_data, 0, 2)
        result_dicts = []
        logger.info(
            "Image filename: %s, size: (%s, %s)",
            image_filename.split("/")[-1], raw_img_width, raw_img_height
        )

        label_filename = image_filename.replace("images", "labels").replace(
            ".tif", ".geojson"
        )
        labels = gpd.read_file(label_filename)
        labels = labels.loc[~labels.geometry.isna(), ["condition", "geometry"]]
        none_mask = [lc is None for lc in labels.condition]
        labels.loc[none_mask, "condition"] = "Complete"

        nb_attempts = 0
        image_counter = 0
        empty_image_counter = 0
        while image_counter < nb_images and nb_attempts < 2 * nb_images:
            # randomly pick an image
            x = np.random.randint(0, raw_img_width - self.image_size)
            y = np.random.randint(0, raw_img_height - self.image_size)

            tile_data = image_data[
                x:(x + self.image_size), y:(y + self.image_size)
            ]
            tile_image = Image.fromarray(tile_data)
            raster_features = geometries.get_image_features(raster)
            tile_items = geometries.extract_tile_items(
                raster_features, labels, x, y, self.image_size, self.image_size
            )
            mask = self.load_mask(tile_items, raster_features, x, y)
            label_dict = utils.build_labels(
                mask, range(self.get_nb_labels()), "tanzania"
            )
            labelled_image = utils.build_image_from_config(mask, self.labels)
            if len(tile_items) > 0:
                tiled_results = self._serialize(
                    tile_image,
                    labelled_image,
                    label_dict,
                    image_filename,
                    output_dir,
                    x,
                    y,
                    "nw",
                )
                if tiled_results:
                    result_dicts.append(tiled_results)
                image_counter += 1
                tile_image_ne = tile_image.transpose(Image.FLIP_LEFT_RIGHT)
                labelled_image_ne = labelled_image.transpose(
                    Image.FLIP_LEFT_RIGHT
                )
                tiled_results_ne = self._serialize(
                    tile_image_ne,
                    labelled_image_ne,
                    label_dict,
                    image_filename,
                    output_dir,
                    x,
                    y,
                    "ne",
                )
                if tiled_results_ne:
                    result_dicts.append(tiled_results_ne)
                image_counter += 1
                tile_image_sw = tile_image.transpose(Image.FLIP_TOP_BOTTOM)
                labelled_image_sw = labelled_image.transpose(
                    Image.FLIP_TOP_BOTTOM
                )
                tiled_results_sw = self._serialize(
                    tile_image_sw,
                    labelled_image_sw,
                    label_dict,
                    image_filename,
                    output_dir,
                    x,
                    y,
                    "sw",
                )
                if tiled_results_sw:
                    result_dicts.append(tiled_results_sw)
                image_counter += 1
                tile_image_se = tile_image_sw.transpose(Image.FLIP_LEFT_RIGHT)
                labelled_image_se = labelled_image_sw.transpose(
                    Image.FLIP_LEFT_RIGHT
                )
                tiled_results_se = self._serialize(
                    tile_image_se,
                    labelled_image_se,
                    label_dict,
                    image_filename,
                    output_dir,
                    x,
                    y,
                    "se",
                )
                if tiled_results_se:
                    result_dicts.append(tiled_results_se)
                image_counter += 1
                del tile_image_se, tile_image_sw, tile_image_ne
                del labelled_image_se, labelled_image_sw, labelled_image_ne
            else:
                if empty_image_counter < 0.1 * nb_images:
                    tiled_results = self._serialize(
                        tile_image,
                        labelled_image,
                        label_dict,
                        image_filename,
                        output_dir,
                        x,
                        y,
                        "nw",
                    )
                    if tiled_results:
                        result_dicts.append(tiled_results)
                    image_counter += 1
                    empty_image_counter += 1
            nb_attempts += 1
        del raster
        logger.info(
            "Generate %s images after %s attempts.", image_counter, nb_attempts
        )
        return result_dicts
Esempio n. 5
0
    def _preprocess_tile(self,
                         x,
                         y,
                         image_filename,
                         output_dir,
                         raster,
                         labels=None):
        """Preprocess one single tile built from `image_filename`, with respect
                         to pixel coordinates `(x, y)`

        Parameters
        ----------
        x : int
            Horizontal pixel coordinate (*i.e.* west bound)
        y : int
            Vertical pixel coordinate (*i.e.* north bound)
        image_filename : str
            Full path towards the image on the disk
        output_dir : str
            Output path where preprocessed image must be saved
        raster : osgeo.gdal.Dataset
            Original georeferenced raster
        labels : geopandas.GeoDataFrame
            Raw image labels (*i.e.* georeferenced buildings)

        Returns
        -------
        dict
            Key/values with the filenames and label ids

        """
        basename_decomp = os.path.splitext(os.path.basename(image_filename))
        img_id_str = (str(self.image_size) + '_' + str(self.image_size) + '_' +
                      str(x) + '_' + str(y))
        new_in_filename = (basename_decomp[0] + '_' + img_id_str + ".png")
        new_in_path = os.path.join(output_dir, 'images', new_in_filename)
        gdal.Translate(new_in_path,
                       raster,
                       format="PNG",
                       srcWin=[x, y, self.image_size, self.image_size])
        if not labels is None:
            raster_features = get_image_features(raster)
            tile_items = extract_tile_items(raster_features,
                                            labels,
                                            x,
                                            y,
                                            self.image_size,
                                            self.image_size,
                                            tile_srid=32737)
            out_labelname = (new_in_path.replace("images", "labels"))
            mask = self.load_mask(tile_items, raster_features, x, y)
            label_dict = utils.build_labels(mask, range(self.get_nb_labels()),
                                            "tanzania")
            labelled_image = utils.build_image_from_config(mask, self.labels)
            labelled_image.save(out_labelname)
            return {
                "raw_filename": image_filename,
                "image_filename": new_in_path,
                "label_filename": out_labelname,
                "labels": label_dict
            }
        else:
            return {
                "raw_filename": image_filename,
                "image_filename": new_in_path
            }