Esempio n. 1
0
        def _generator_fn(idx):
            identifier = sampler[idx]
            if idx == len(sampler) - 1:
                sampler.randomize()

            outputs = [
                output for output in Creator(creator.outputs).eval(identifier)
            ]
            if len(outputs) > 0:
                outputs = [[
                    Sample(
                        np.concatenate([output[j][i] for output in outputs]),
                        np.concatenate(
                            [output[j][i].affine for output in outputs]))
                    for i in range(len(outputs[0][j]))
                ] for j in range(len(outputs[0]))]

            else:
                outputs = [[
                    np.full((1, output_shape[1] or 1, output_shape[2]
                             or 1, output_shape[3] or 1, output_shape[4] or 1),
                            1234567890,
                            dtype=np.float32) for output_shape in output_shapes
                ] for output_shapes in creator.output_shapes]

            gc.collect()
            return [output_ for output in outputs for output_ in output]
Esempio n. 2
0
    def load(self):
        img = Image.open(self.file_path)
        if self.kwargs:
            img = img.convert(**self.kwargs)

        img = np.asarray(img)
        assert img.ndim in [
            2, 3
        ], "A 2D image file can only have a maximum of three dimensions: x, y, color."
        return Sample(img if img.ndim == 2 else img[:, :, None, :])
Esempio n. 3
0
    def predict(self,
                split,
                model_name,
                key,
                fold_i=None,
                round_i=None,
                name_tag=None,
                **kwargs):
        prev_fold_i = self.fold_i
        if fold_i is None:
            fold_i = self.fold_i

        prev_round_i = self.round_i
        if round_i is None:
            round_i = self.round_i

        if fold_i is not None and round_i is not None:
            if not isinstance(fold_i, Iterable):
                fold_i = [fold_i]

            dvn_models = []
            for fold_i_ in fold_i:
                self.update(fold_i=fold_i_, round_i=round_i)
                dvn_models.append(
                    DvnModel.load_model(
                        os.path.join(self.models_dir, model_name)))

            self.update(fold_i="-".join([str(fold_i_) for fold_i_ in fold_i]),
                        round_i=round_i)
            output_dirs = self.get_split_dirs(split)
            identifiers = self.get_split_identifiers(split)
            assert output_dirs is not None and identifiers is not None, "For this split there were no identifiers or there was no Mirc object specified."
            self.create()
            for identifier, output_dir in zip(identifiers, output_dirs):
                samples = [
                    dvn_model.predict(key, [identifier])[0]
                    for dvn_model in dvn_models
                ]
                sample = [[
                    Sample(
                        np.mean([sample[i][j] for sample in samples], axis=0),
                        np.mean([sample[i][j].affine for sample in samples],
                                axis=0)) for j in range(len(samples[0][i]))
                ] for i in range(len(samples[0]))]
                DvnModel.save_sample(key,
                                     sample,
                                     output_dir,
                                     name_tag=name_tag,
                                     **kwargs)

            self.update(fold_i=prev_fold_i, round_i=prev_round_i)
Esempio n. 4
0
    def load(self):
        niis = [nib.load(file_path) for file_path in self.file_paths]
        assert all([
            np.allclose(niis[0].affine, nii.affine) for nii in niis[1:]
        ]), "Not all affines are equal!"
        if self.mode == "concat":
            array = np.concatenate(
                [nii.get_fdata(caching="unchanged") for nii in niis],
                axis=self.axis)

        else:
            array = np.stack(
                [nii.get_fdata(caching="unchanged") for nii in niis],
                axis=self.axis)

        return Sample(array, niis[0].affine)
Esempio n. 5
0
    def predict(self,
                key,
                sampler,
                mode="last",
                output_dirs=None,
                name_tag=None,
                save_x=True,
                save_y=False,
                save_sample_weight=False):
        assert mode in [
            "all", "last"
        ], "Will we only keep the last generated output (i.e. last) or everything (i.e. all)?"
        assert key in self.outputs, "There are no outputs available for this key."
        assert len(
            self.outputs[key]
        ) >= 1, "Outputs must be in the format [x, y, sample_weight] and to use predict at least [x] must be available."
        predictions = []
        for identifier_i, identifier in enumerate(sampler):
            start_time = time.time()
            samples = [
                sample
                for sample in Creator(self.outputs[key]).eval(identifier)
            ][0 if mode == "all" else -1:]
            samples = [[
                Sample(
                    np.concatenate([output[j][i] for output in samples]),
                    np.concatenate([output[j][i].affine
                                    for output in samples]))
                for i in range(len(samples[0][j]))
            ] for j in range(len(samples[0]))]
            if output_dirs is not None:
                self.save_sample(key,
                                 samples,
                                 output_dirs[identifier_i],
                                 name_tag=name_tag,
                                 save_x=save_x,
                                 save_y=save_y,
                                 save_sample_weight=save_sample_weight)

            predictions.append(samples)
            print("Predicted {} with {} in {:.0f} s.".format(
                sampler[identifier_i](), key,
                time.time() - start_time))

        return predictions
Esempio n. 6
0
 def load(self):
     nii = nib.load(self.file_path)
     return Sample(nii.get_fdata(caching="unchanged"), nii.affine)
Esempio n. 7
0
 def load(self):
     return Sample(self.nifty.get_fdata(caching="unchanged"),
                   self.nifty.affine)
Esempio n. 8
0
 def load(self):
     return Sample(self.array, self.affine)
Esempio n. 9
0
def create_samples():
    # Let's define a toy example
    x = np.zeros((100, 100))
    x[25:50, 25:50] = 1
    x[25:50, 50:75] = 2
    y = np.zeros((100, 100))
    y[25:50, 25:75] = 1
    fig, axs = plt.subplots(1, 2)
    axs[0].imshow(x, vmin=0, vmax=2)
    axs[1].imshow(y, vmin=0, vmax=2)
    plt.show()

    # inputs
    x_input = x_path = SampleInput(
        Sample(x)
    )  # Sample converts x into a 5D array (batch, x, y, z, features) with an affine attribute (here just np.eye)
    y_input = y_path = SampleInput(Sample(y), n=None)

    # processing
    x_path, y_path = AffineDeformation(x_path,
                                       translation_window_width=(10, 10, 0),
                                       rotation_window_width=(3.14 / 10, 0,
                                                              0))(x_path,
                                                                  y_path)
    x_path_intermediate = x_path
    x_path, y_path = RandomCrop(x_path, (27, 27, 1), n=16,
                                nonzero=True)(x_path, y_path)
    x_path, y_path = Flip((0.5, 0, 0))(x_path, y_path)
    y_path = Crop(y_path, (21, 21, 1))(y_path)

    # outputs
    x_output = Put(y_input, caching=False)(x_path)
    y_output = y_input

    # Let's visualize some x samples at the end of the processing pathway:
    fig, axs = plt.subplots(3, 3)
    for i in range(3):
        x_sample = x_path.eval()[0]
        x_sample_intermediate = x_path_intermediate[0]
        axs[i, 0].imshow(x, vmin=0, vmax=2)
        axs[i, 1].imshow(x_sample_intermediate[0, :, :, 0, 0], vmin=0, vmax=2)
        axs[i, 2].imshow(x_sample[0, :, :, 0, 0], vmin=0, vmax=2)

    plt.show()

    # It was clear that the original x is affine transformed and then multiple patches are taken
    # Suppose we also want to put the drawn sample back onto the original image space (to see what happens if we would instantiate the Put transformer with caching=True, see end of this demo ;-))
    fig, axs = plt.subplots(1, 4)
    axs[0].imshow(x, vmin=0, vmax=2)
    for i in range(3):
        x_sample = x_output.eval()[0]
        axs[i + 1].imshow(x_sample[0, :, :, 0, 0], vmin=0, vmax=2)

    plt.show()

    # Suppose we want to produce x and y samples, we must make sure that all transformers are updated (and not only the ones "below" x_path
    # There are two options:
    # Option 1: Just make sure they are grouped in one path and evaluate that path
    samples_path = Group()([x_path, y_path])
    fig, axs = plt.subplots(2, 4)
    axs[0, 0].imshow(x, vmin=0, vmax=2)
    axs[1, 0].imshow(y, vmin=0, vmax=2)
    for i in range(3):
        x_sample, y_sample = samples_path.eval()
        axs[0, i + 1].imshow(x_sample[0, :, :, 0, 0], vmin=0, vmax=2)
        axs[1, i + 1].imshow(y_sample[0, :, :, 0, 0], vmin=0, vmax=2)

    plt.show()

    # Option 2: Make a higher abstract Creator network and evaluate that network (this has the advantage that it only evaluates the nodes that are relevant and thus is more efficient)
    creator = Creator([x_path, y_path])
    creator.summary()
    fig, axs = plt.subplots(2, 4)
    axs[0, 0].imshow(x, vmin=0, vmax=2)
    axs[1, 0].imshow(y, vmin=0, vmax=2)
    for i, output in enumerate(creator.eval()):
        x_sample, y_sample = output
        axs[0, i + 1].imshow(x_sample[0][0, :, :, 0, 0], vmin=0, vmax=2)
        axs[1, i + 1].imshow(y_sample[0][0, :, :, 0, 0], vmin=0, vmax=2)
        if i == 2:
            break

    plt.show()

    # Finally, a Creator has notion of when your network has ran out of samples. As you can see, we ask 16 samples from the RandomCrop transformer (all the rest generate a default of 1 sample).
    # This means the creator should create us 16 samples
    creator = Creator([x_output, y_output])
    creator.summary()
    fig, axs = plt.subplots(4, 4)
    count = 0
    for i, output in enumerate(creator.eval()):
        x_sample, y_sample = output
        axs[i // 4, i % 4].imshow(x_sample[0][0, :, :, 0, 0], vmin=0, vmax=2)
        count += 1

    plt.show()
    assert count == 16

    # Suppose we use a GridCrop instead of a RandomCrop with no n specified --> The GridCrop will create a number of samples as to complete the entire grid.
    # inputs
    x_input = x_path = SampleInput(Sample(x))
    y_input = y_path = SampleInput(Sample(y), n=None)
    # processing
    x_path, y_path = AffineDeformation(x_path,
                                       translation_window_width=(10, 10, 0),
                                       rotation_window_width=(0, 0, 0))(x_path,
                                                                        y_path)
    x_path, y_path = GridCrop(x_path, (27, 27, 1),
                              strides=(21, 21, 1),
                              nonzero=True)(x_path, y_path)
    x_path, y_path = Flip((0.5, 0, 0))(x_path, y_path)
    y_path = Crop(y_path, (21, 21, 1))(x_path)
    # outputs
    # Try to understand completely what the Buffer does! Experiment a bit with different buffer_sizes (also try None) and drop_remainder=True/False. It basically batches the samples that arrive here.
    # Just like with any other transformer you can hang multiple paths to the Buffer if they have to be buffered in the same way
    x_path, y_path = Buffer(buffer_size=3, drop_remainder=False)(x_path,
                                                                 y_path)
    x_output = Put(y_input)(x_path)
    y_output = y_input
    creator = Creator([x_output, y_output])
    creator.summary()
    fig, axs = plt.subplots(4, 4)
    count = 0
    for i, output in enumerate(creator.eval()):
        if i == 0:
            creator.write_transformer_outputs(
                "/Users/jberte3/Desktop/deepvoxnet2")

        x_sample, y_sample = output
        axs[i // 4, i % 4].imshow(x_sample[0][0, :, :, 0, 0], vmin=0, vmax=2)
        count += 1

    plt.show()
    print("There were {} samples from the grid cropper.".format(count))