Esempio n. 1
0
     # state_decoder=(nn.Relu(ds, 1024) >> nn.Reshape([16, 16, 4])
     # >> nn.Convolution([3, 3, 32]) >> nn.Relu()
     # >> nn.Deconvolution([2, 2, 32]) >> nn.Relu()
     # >> nn.Convolution([3, 3, 32]) >> nn.Relu()
     # >> nn.Convolution([2, 2, 2]) >> nn.Flatten() >> nn.Bernoulli()),
     state_encoder=nn.IdentityVariance(),
     state_decoder=nn.IdentityVariance(),
     action_encoder=nn.IdentityVariance(),
     action_decoder=nn.IdentityVariance(),
     # prior={'prior_type': 'none'},
     # prior={'prior_type': 'normal'},
     # prior={'prior_type': 'lds'},
     # prior={'prior_type': 'blds'},
     prior={
         'prior_type': 'nnds',
         'network': nn.Relu(ds + da, 200) >> nn.Relu(200) >> nn.Gaussian(ds)
     },
 ),
 train=dict(
     num_epochs=4000,
     learning_rate=1e-3,
     batch_size=16,
     dump_every=1000,
     summary_every=50 / 2,
     beta_start=1.0,
     beta_rate=0,
 ),
 data=dict(
     num_rollouts=100,
     init_std=.2,
 ),
Esempio n. 2
0
def train(out_dir, dim, seed, load_model=None):
    out_path = out_dir / 'models'
    if not (out_path).exists():
        out_path.mkdir()
    boards = {}
    for round in DATA:
        for location in DATA[round]:
            for board_id in DATA[round][location]:
                if board_id not in boards:
                    boards[board_id] = set()
                boards[board_id].add((round, location))
    if load_model is None:
        sensor_models = {
            board_id: nn.Relu(100) >> nn.Relu(100) >> nn.Linear(dim)
            for board_id in boards
            # board_id: nn.Linear(3, dim) for board_id in boards
        }
        calibration_model = nn.Relu(dim + 3, args.hidden_size) >> nn.Relu(
            args.hidden_size) >> nn.Linear(2)
        split_model = SplitModel(sensor_models,
                                 calibration_model,
                                 log_dir=out_dir,
                                 lr=args.lr,
                                 batch_size=args.batch_size)
    else:
        split_model = joblib.load(load_model)
    data = {}
    print("Filtering: %s" % ignore)
    for board_id in boards:
        board_train = []
        for round, location in boards[board_id]:
            if (round, location, board_id) in ignore:
                print("Removing: ", round, location, board_id)
                continue
            board_train.append(load(*(round, location, board_id))[0])
        if len(board_train) > 0:
            print("Loaded board[%u]: %u" % (board_id, len(board_train)))
            board_train = pd.concat(board_train)
            board_train['board'] = board_id
            if board_id not in data:
                data[board_id] = []
            data[board_id].append(board_train)
    data = [pd.concat(ds) for ds in data.values()]
    max_size = max([d.shape[0] for d in data])
    for i in range(len(data)):
        d = data[i]
        if d.shape[0] < max_size:
            data[i] = d.append(d.sample(max_size - d.shape[0], replace=True))
    data = pd.concat(data)

    def cb(model):
        with open(str(out_path / 'model_latest.pkl'), 'wb') as fp:
            joblib.dump(split_model, fp)

    print("Total data size:", data.shape)
    split_model.fit(data[sensor_features],
                    data[env_features],
                    data['board'],
                    data[Y_features],
                    dump_every=(out_dir / 'models' / 'model_latest.pkl', 1000),
                    n_iters=args.num_iters,
                    cb=cb)
    with open(str(out_path / 'model.pkl'), 'wb') as fp:
        joblib.dump(split_model, fp)
Esempio n. 3
0
            joblib.dump(
                (
                    board_id,
                    Model(X_features).fit(train_data[X_features], train_data[Y_features])
                ), fp
            )

if __name__ == "__main__":
    args = parse_args()
    fs = s3fs.S3FileSystem(anon=False)
    experiment_dir = Path(BUCKET_NAME) / args.experiment
    out_dir = experiment_dir / args.name
    features = X_features[:]
    for feature in args.ignore_feature:
        features.remove(feature)
    if args.model == 'subu':
        Model = SubuForest
    elif args.model == 'linear':
        Model = Linear
    elif args.model == 'nn-2':
        Model = lambda features, : NeuralNetwork(features, nn.Relu(len(features), 200) >> nn.Relu(200) >> nn.Linear(2))
    elif args.model == 'nn-4':
        Model = lambda features: NeuralNetwork(features, nn.Relu(len(features), 500) >> nn.Relu(500) >> nn.Relu(500) >> nn.Relu(500) >> nn.Linear(2))

    if args.level1:
        level1(out_dir, features)
    if args.level2:
        level2(out_dir, features)
    if args.level3:
        level3(out_dir, features, args.seed)
Esempio n. 4
0
ds = 10
du = da = env.get_action_dim()
horizon = 50

experiment = dict(
    experiment_name='vae',
    experiment_type='train_vae',
    env=env_params,
    model=dict(
        do=do,
        du=du,
        ds=ds,
        da=da,
        horizon=horizon,
        state_encoder=(nn.Reshape(do, [64, 64, 3]) >> nn.Convolution(
            [7, 7, 64], strides=(1, 1)) >> nn.Relu() >> nn.Convolution(
                [5, 5, 32], strides=(2, 2)) >> nn.Convolution([3, 3, 8],
                                                              strides=(2, 2))
                       >> nn.Flatten() >> nn.Relu(256) >> nn.Gaussian(ds)),
        state_decoder=(
            nn.Relu(ds, 512) >> nn.Reshape([8, 8, 8]) >> nn.Deconvolution(
                [3, 3, 32]) >> nn.Deconvolution([5, 5, 64]) >>
            nn.Deconvolution([7, 7, 3]) >> nn.Flatten() >> nn.Bernoulli()),
        action_encoder=nn.IdentityVariance(variance=1e-4),
        action_decoder=nn.IdentityVariance(variance=1e-4),
        prior=sweep([
            dict(prior_type='blds', smooth=True, time_varying=True),
            dict(prior_type='normal'),
        ], ['blds-tv-smooth', 'normal']),
        cost=dict(cost_type='quadratic', learn_stdev=sweep([False, True])),
    ),
Esempio n. 5
0

if __name__ == "__main__":
    args = parse_args()
    out_dir = Path('results') / args.name

    out_dir.mkdir(exist_ok=True, parents=True)
    features = X_features[:]
    for feature in args.ignore_feature:
        features.remove(feature)
    if args.model == 'subu':
        Model = SubuForest
    elif args.model == 'linear':
        Model = Linear
    elif args.model == 'nn-2':
        Model = lambda features, : NeuralNetwork(
            features,
            nn.Relu(len(features), 200) >> nn.Relu(200) >> nn.Linear(2))
    elif args.model == 'nn-4':
        Model = lambda features: NeuralNetwork(
            features,
            nn.Relu(len(features), 500) >> nn.Relu(500) >> nn.Relu(500) >> nn.
            Relu(500) >> nn.Linear(2))

    if args.level1:
        level1(out_dir, features)
    if args.level2:
        level2(out_dir, features)
    if args.level3:
        level3(out_dir, features, args.seed)
Esempio n. 6
0
                       # >> nn.Convolution([3, 3, 32]) >> nn.Relu()
                       # >> nn.Flatten() >> nn.Relu(200) >> nn.Gaussian(ds)),
        # state_decoder=(nn.Relu(ds, 1024) >> nn.Reshape([16, 16, 4])
                       # >> nn.Convolution([3, 3, 32]) >> nn.Relu()
                       # >> nn.Deconvolution([2, 2, 32]) >> nn.Relu()
                       # >> nn.Convolution([3, 3, 32]) >> nn.Relu()
                       # >> nn.Convolution([2, 2, 2]) >> nn.Flatten() >> nn.Bernoulli()),
        state_encoder=nn.IdentityVariance(),
        state_decoder=nn.IdentityVariance(),
        action_encoder=nn.IdentityVariance(),
        action_decoder=nn.IdentityVariance(),
        # prior={'prior_type': 'none'},
        # prior={'prior_type': 'normal'},
        # prior={'prior_type': 'lds'},
        # prior={'prior_type': 'blds'},
        prior={'prior_type': 'nnds', 'network': nn.Relu(ds + da, 200) >> nn.Relu(200) >> nn.Gaussian(ds)},
    ),
    train=dict(
        num_epochs=4000,
        learning_rate=1e-4,
        batch_size=2,
        dump_every=50,
        summary_every=50 / 2,
    ),
    data=dict(
        num_rollouts=100,
        init_std=0.1,
    ),
    out_dir='s3://parasol-experiments/vae/reacher-noimage',
    # out_dir='temp2/pm-noimage',
)