Esempio n. 1
0
    def test_simple_circuits(self):

        default_qubit = qml.device('default.qubit', wires=4)

        for dev in self.devices:
            gates = [
                qml.PauliX(wires=0),
                qml.PauliY(wires=1),
                qml.PauliZ(wires=2),
                qml.S(wires=3),
                qml.T(wires=0),
                qml.RX(2.3, wires=1),
                qml.RY(1.3, wires=2),
                qml.RZ(3.3, wires=3),
                qml.Hadamard(wires=0),
                qml.Rot(0.1, 0.2, 0.3, wires=1),
                qml.CRot(0.1, 0.2, 0.3, wires=[2, 3]),
                qml.Toffoli(wires=[0, 1, 2]),
                qml.SWAP(wires=[1, 2]),
                qml.CSWAP(wires=[1, 2, 3]),
                qml.U1(1.0, wires=0),
                qml.U2(1.0, 2.0, wires=2),
                qml.U3(1.0, 2.0, 3.0, wires=3),
                qml.CRX(0.1, wires=[1, 2]),
                qml.CRY(0.2, wires=[2, 3]),
                qml.CRZ(0.3, wires=[3, 1]),
                qml.CZ(wires=[2, 3]),
                qml.QubitUnitary(np.array([[1, 0], [0, 1]]), wires=2),
            ]

            layers = 3
            np.random.seed(1967)
            gates_per_layers = [
                np.random.permutation(gates).numpy() for _ in range(layers)
            ]

            for obs in {
                    qml.PauliX(wires=0),
                    qml.PauliY(wires=0),
                    qml.PauliZ(wires=0),
                    qml.Identity(wires=0),
                    qml.Hadamard(wires=0)
            }:
                if obs.name in dev.observables:

                    def circuit():
                        """4-qubit circuit with layers of randomly selected gates and random connections for
                        multi-qubit gates."""
                        qml.BasisState(np.array([1, 0, 0, 0]),
                                       wires=[0, 1, 2, 3])
                        for gates in gates_per_layers:
                            for gate in gates:
                                if gate.name in dev.operations:
                                    qml.apply(gate)
                        return qml.expval(obs)

                    qnode_default = qml.QNode(circuit, default_qubit)
                    qnode = qml.QNode(circuit, dev)

                    assert np.allclose(qnode(), qnode_default(), atol=1e-3)
Esempio n. 2
0
 def circuit(x, y, z):
     qml.RX(x, wires=[0])
     qml.RZ(y, wires=[0])
     qml.CNOT(wires=[0, 1])
     qml.RY(y, wires=[0])
     qml.RX(z, wires=[0])
     return qml.expval(qml.PauliY(0)), qml.expval(qml.PauliZ(1))
Esempio n. 3
0
    def test_projectq_ops(self):

        results = [-1.0, -1.0]
        for i, dev in enumerate(self.devices[1:3]):

            gates = [
                qml.PauliX(wires=0),
                qml.PauliY(wires=1),
                qml.PauliZ(wires=2),
                SqrtX(wires=0),
                SqrtSwap(wires=[3, 0]),
            ]

            layers = 3
            np.random.seed(1967)
            gates_per_layers = [
                np.random.permutation(gates).numpy() for _ in range(layers)
            ]

            def circuit():
                """4-qubit circuit with layers of randomly selected gates."""
                for gates in gates_per_layers:
                    for gate in gates:
                        if gate.name in dev.operations:
                            qml.apply(gate)
                return qml.expval(qml.PauliZ(0))

            qnode = qml.QNode(circuit, dev)
            assert np.allclose(qnode(), results[i], atol=1e-3)
Esempio n. 4
0
    def test_check_validity(self):
        """test that the check_validity method correctly
        determines what operations/observables are supported."""
        self.logTestName()

        dev = qml.device('default.qubit', wires=2)
        # overwrite the device supported operations and observables
        dev._operation_map = {
            'RX': 0,
            'PauliX': 0,
            'PauliY': 0,
            'PauliZ': 0,
            'Hadamard': 0
        }
        dev._observable_map = {'PauliZ': 0, 'Identity': 0}

        # test a valid queue
        queue = [
            qml.RX(1., wires=0, do_queue=False),
            qml.PauliY(wires=1, do_queue=False),
            qml.PauliZ(wires=2, do_queue=False),
        ]

        observables = [qml.expval(qml.PauliZ(0, do_queue=False))]

        dev.check_validity(queue, observables)

        # test an invalid operation
        queue = [qml.RY(1., wires=0, do_queue=False)]
        with self.assertRaisesRegex(qml.DeviceError, "Gate RY not supported"):
            dev.check_validity(queue, observables)

        # test an invalid observable with the same name
        # as a valid operation
        queue = [qml.PauliY(wires=0, do_queue=False)]
        observables = [qml.expval(qml.PauliY(0, do_queue=False))]
        with self.assertRaisesRegex(qml.DeviceError,
                                    "Observable PauliY not supported"):
            dev.check_validity(queue, observables)
Esempio n. 5
0
 def circuit(x):
     """Test quantum function"""
     qml.RX(x, wires=0)
     return qml.expval(qml.PauliY(0))
Esempio n. 6
0
 def ansatz(x, y, z):
     qml.QubitStateVector(np.array([1, 0, 1, 1])/np.sqrt(3), wires=[0, 1])
     qml.Rot(x, y, z, wires=0)
     qml.CNOT(wires=[0, 1])
     return qml.expval(qml.PauliZ(0)), qml.expval(qml.PauliY(1))
Esempio n. 7
0
 def circuit2(weights):
     qml.QubitStateVector(np.array([1, 0, 1, 1]) / np.sqrt(3),
                          wires=[0, 1])
     qml.Rot(weights[0], weights[1], 0.3, wires=0)
     qml.CNOT(wires=[0, 1])
     return qml.expval(qml.PauliZ(0)), qml.expval(qml.PauliY(1))