Esempio n. 1
0
def _handler(ir_path, vis_path, model_path, model_pre_path, ssim_weight, index, output_path=None):
	ir_img = get_train_images(ir_path, flag=False)
	vis_img = get_train_images(vis_path, flag=False)
	# ir_img = get_train_images_rgb(ir_path, flag=False)
	# vis_img = get_train_images_rgb(vis_path, flag=False)
	dimension = ir_img.shape

	ir_img = ir_img.reshape([1, dimension[0], dimension[1], dimension[2]])
	vis_img = vis_img.reshape([1, dimension[0], dimension[1], dimension[2]])

	ir_img = np.transpose(ir_img, (0, 2, 1, 3))
	vis_img = np.transpose(vis_img, (0, 2, 1, 3))

	print('img shape final:', ir_img.shape)

	with tf.Graph().as_default(), tf.Session() as sess:
		infrared_field = tf.placeholder(
			tf.float32, shape=ir_img.shape, name='content')
		visible_field = tf.placeholder(
			tf.float32, shape=ir_img.shape, name='style')

		dfn = DenseFuseNet(model_pre_path)

		output_image = dfn.transform_addition(infrared_field, visible_field)
		# restore the trained model and run the style transferring
		saver = tf.train.Saver()
		saver.restore(sess, model_path)

		output = sess.run(output_image, feed_dict={infrared_field: ir_img, visible_field: vis_img})

		save_images(ir_path, output, output_path,
		            prefix='fused' + str(index), suffix='_densefuse_addition_'+str(ssim_weight))
Esempio n. 2
0
def _handler(ir_path, vi_path, model_path, model_pre_path, index, output_path=None):
    ir_img = read_test_image(ir_path)
    vi_img = read_test_image(vi_path)
    dimension = ir_img.shape

    ir_img = ir_img.reshape([1, dimension[0], dimension[1], dimension[2]])
    vi_img = vi_img.reshape([1, dimension[0], dimension[1], dimension[2]])

    print('img shape final:', ir_img.shape)

    with tf.Graph().as_default(), tf.Session() as sess:
        infrared_field = tf.placeholder(
            tf.float32, shape=ir_img.shape, name='content')
        visible_field = tf.placeholder(
            tf.float32, shape=ir_img.shape, name='style')

        dfn = DenseFuseNet(model_pre_path)

        # restore the trained model and run the style transferring
        saver = tf.train.Saver()
        saver.restore(sess, model_path)

        output_image = dfn.transform_addition(infrared_field, visible_field)
        # output_image = dfn.transform_cbf(infrared_field, visible_field)

        output = sess.run(output_image, feed_dict={infrared_field: ir_img, visible_field: vi_img})

        save_images(ir_path, output, output_path, prefix='Dense_fuse_' + str(index).zfill(2))


# def _handler_cbf(ir_path, vi_path, model_path, model_pre_path, index, output_path=None):
#     ir_img = read_test_image(ir_path)
#     vi_img = read_test_image(vi_path)
#     dimension = ir_img.shape
#
#     ir_img = ir_img.reshape([1, dimension[0], dimension[1], dimension[2]])
#     vi_img = vi_img.reshape([1, dimension[0], dimension[1], dimension[2]])
#
#     print('img shape final:', ir_img.shape)
#
#     with tf.compat.v1.Graph().as_default(), tf.compat.v1.Session() as sess:
#         infrared_field = tf.placeholder(tf.float32, shape=ir_img.shape, name='image_ir')
#         visible_field = tf.placeholder(tf.float32, shape=ir_img.shape, name='image_vi')
#
#         dfn = DenseFuseNet(model_pre_path)
#
#         # restore the trained model and run the style transferring
#         # saver = tf.train.Saver()
#         # saver.restore(sess, model_path)
#
#         output_image = dfn.transform_cbf(infrared_field, visible_field)
#
#         output = sess.run(output_image, feed_dict={infrared_field: ir_img, visible_field: vi_img})
#
#         save_images(ir_path, output, output_path, prefix='Dense_fuse_' + str(index).zfill(2))
Esempio n. 3
0
def _handler_video(ir_path, vis_path, model_path, model_pre_path, ssim_weight, output_path=None):
	infrared = ir_path[0]
	img = get_train_images(infrared, flag=False)
	img = img.reshape([1, img.shape[0], img.shape[1], img.shape[2]])
	img = np.transpose(img, (0, 2, 1, 3))
	print('img shape final:', img.shape)
	num_imgs = len(ir_path)

	with tf.Graph().as_default(), tf.Session() as sess:
		# build the dataflow graph
		infrared_field = tf.placeholder(
			tf.float32, shape=img.shape, name='content')
		visible_field = tf.placeholder(
			tf.float32, shape=img.shape, name='style')

		dfn = DenseFuseNet(model_pre_path)

		output_image = dfn.transform_addition(infrared_field, visible_field)

		# restore the trained model and run the style transferring
		saver = tf.train.Saver()
		saver.restore(sess, model_path)

		##################GET IMAGES###################################################################################
		start_time = datetime.now()
		for i in range(num_imgs):
			print('image number:', i)
			infrared = ir_path[i]
			visible = vis_path[i]

			ir_img = get_train_images(infrared, flag=False)
			vis_img = get_train_images(visible, flag=False)
			dimension = ir_img.shape

			ir_img = ir_img.reshape([1, dimension[0], dimension[1], dimension[2]])
			vis_img = vis_img.reshape([1, dimension[0], dimension[1], dimension[2]])

			ir_img = np.transpose(ir_img, (0, 2, 1, 3))
			vis_img = np.transpose(vis_img, (0, 2, 1, 3))

			################FEED########################################
			output = sess.run(output_image, feed_dict={infrared_field: ir_img, visible_field: vis_img})
			save_images(infrared, output, output_path,
			            prefix='fused' + str(i), suffix='_addition_' + str(ssim_weight))
			######################################################################################################
		elapsed_time = datetime.now() - start_time
		print('Dense block video==> elapsed time: %s' % (elapsed_time))
Esempio n. 4
0
def _handler(ir_path,
             vis_path,
             model_path,
             model_pre_path,
             ssim_weight,
             index,
             output_path=None):
    ir_img = get_train_images(ir_path, flag=False)
    vis_img = get_train_images(vis_path, flag=False)
    # ir_img = get_train_images_rgb(ir_path, flag=False)
    # vis_img = get_train_images_rgb(vis_path, flag=False)
    dimension = ir_img.shape

    ir_img = ir_img.reshape([1, dimension[0], dimension[1], dimension[2]])
    vis_img = vis_img.reshape([1, dimension[0], dimension[1], dimension[2]])

    ir_img = np.transpose(ir_img, (0, 2, 1, 3))
    vis_img = np.transpose(vis_img, (0, 2, 1, 3))

    print('img shape final:', ir_img.shape)

    with tf.Graph().as_default(), tf.Session() as sess:
        infrared_field = tf.placeholder(tf.float32,
                                        shape=ir_img.shape,
                                        name='content')
        visible_field = tf.placeholder(tf.float32,
                                       shape=ir_img.shape,
                                       name='style')

        dfn = DenseFuseNet(model_pre_path)

        output_image = dfn.transform_addition(infrared_field, visible_field)
        # restore the trained model and run the style transferring
        saver = tf.train.Saver()
        saver.restore(sess, model_path)

        output = sess.run(output_image,
                          feed_dict={
                              infrared_field: ir_img,
                              visible_field: vis_img
                          })

        save_images(ir_path, output, output_path, prefix='3', suffix='')
        img333 = Image.open('/home/bingyang/wby/1/3.png')
        imgout = img333.transpose(Image.FLIP_LEFT_RIGHT)
        imgout = imgout.transpose(Image.ROTATE_90)
        imgout.save('/home/bingyang/wby/1/3.png')
def _handler(content_name, style_name, model_path, model_pre_path, ssim_weight, index, output_path=None):
    infrared_path = content_name
    visible_path = style_name

    content_img = get_train_images(infrared_path, flag=False)
    style_img   = get_train_images(visible_path, flag=False)
    dimension = content_img.shape

    content_img = content_img.reshape([1, dimension[0], dimension[1], dimension[2]])
    style_img   = style_img.reshape([1, dimension[0], dimension[1], dimension[2]])

    content_img = np.transpose(content_img, (0, 2, 1, 3))
    style_img = np.transpose(style_img, (0, 2, 1, 3))
    print('content_img shape final:', content_img.shape)

    with tf.Graph().as_default(), tf.Session() as sess:

        # build the dataflow graph
        content = tf.placeholder(
            tf.float32, shape=content_img.shape, name='content')
        style = tf.placeholder(
            tf.float32, shape=style_img.shape, name='style')

        dfn = DenseFuseNet(model_pre_path)

        output_image = dfn.transform_addition(content,style)
        # output_image = dfn.transform_recons(style)
        # output_image = dfn.transform_recons(content)

        # restore the trained model and run the style transferring
        saver = tf.train.Saver()
        saver.restore(sess, model_path)

        output = sess.run(output_image, feed_dict={content: content_img, style: style_img})
        save_images(infrared_path, output, output_path,
                    prefix='fused' + str(index), suffix='_densefuse_addition_'+str(ssim_weight))

    return output
Esempio n. 6
0
def _handler_rgb(ir_path,
                 vis_path,
                 model_path,
                 model_pre_path,
                 ssim_weight,
                 index,
                 output_path=None):
    # ir_img = get_train_images(ir_path, flag=False)
    # vis_img = get_train_images(vis_path, flag=False)
    ir_img = get_test_image_rgb(ir_path, flag=False)
    vis_img = get_test_image_rgb(vis_path, flag=False)
    dimension = ir_img.shape

    ir_img = ir_img.reshape([1, dimension[0], dimension[1], dimension[2]])
    vis_img = vis_img.reshape([1, dimension[0], dimension[1], dimension[2]])

    #ir_img = np.transpose(ir_img, (0, 2, 1, 3))
    #vis_img = np.transpose(vis_img, (0, 2, 1, 3))

    ir_img1 = ir_img[:, :, :, 0]
    ir_img1 = ir_img1.reshape([1, dimension[0], dimension[1], 1])
    ir_img2 = ir_img[:, :, :, 1]
    ir_img2 = ir_img2.reshape([1, dimension[0], dimension[1], 1])
    ir_img3 = ir_img[:, :, :, 2]
    ir_img3 = ir_img3.reshape([1, dimension[0], dimension[1], 1])

    vis_img1 = vis_img[:, :, :, 0]
    vis_img1 = vis_img1.reshape([1, dimension[0], dimension[1], 1])
    vis_img2 = vis_img[:, :, :, 1]
    vis_img2 = vis_img2.reshape([1, dimension[0], dimension[1], 1])
    vis_img3 = vis_img[:, :, :, 2]
    vis_img3 = vis_img3.reshape([1, dimension[0], dimension[1], 1])

    print('img shape final:', ir_img1.shape)

    with tf.Graph().as_default(), tf.Session() as sess:
        infrared_field = tf.placeholder(tf.float32,
                                        shape=ir_img1.shape,
                                        name='content')
        visible_field = tf.placeholder(tf.float32,
                                       shape=ir_img1.shape,
                                       name='style')

        dfn = DenseFuseNet(model_pre_path)

        output_image = dfn.transform_addition(infrared_field, visible_field)
        # restore the trained model and run the style transferring
        saver = tf.train.Saver()
        saver.restore(sess, model_path)

        output1 = sess.run(output_image,
                           feed_dict={
                               infrared_field: ir_img1,
                               visible_field: vis_img1
                           })
        output2 = sess.run(output_image,
                           feed_dict={
                               infrared_field: ir_img2,
                               visible_field: vis_img2
                           })
        output3 = sess.run(output_image,
                           feed_dict={
                               infrared_field: ir_img3,
                               visible_field: vis_img3
                           })

        output1 = output1.reshape([1, dimension[0], dimension[1]])
        output2 = output2.reshape([1, dimension[0], dimension[1]])
        output3 = output3.reshape([1, dimension[0], dimension[1]])

        output = np.stack((output1, output2, output3), axis=-1)
        #output = np.transpose(output, (0, 2, 1, 3))
        save_images(ir_path,
                    output,
                    output_path,
                    prefix='',
                    suffix='' + str(ssim_weight))
def _handler_rgb_patch_based(images_path,
                             model_path,
                             model_pre_path,
                             index,
                             output_path=None):
    size = len(images_path)
    images = ["" for x in range(size)]
    ir_img1 = ["" for x in range(size)]
    ir_img2 = ["" for x in range(size)]
    ir_img3 = ["" for x in range(size)]
    for x in range(0, size):
        images[x] = get_train_images_rgb(images_path[x], flag=False)
        dimension = images[x].shape

        images[x] = images[x].reshape(
            [1, dimension[0], dimension[1], dimension[2]])
        images[x] = np.transpose(images[x], (0, 2, 1, 3))

        ir_img1[x] = images[x][:, :, :, 0]
        ir_img1[x] = ir_img1[x].reshape([1, dimension[0], dimension[1], 1])
        ir_img2[x] = images[x][:, :, :, 1]
        ir_img2[x] = ir_img2[x].reshape([1, dimension[0], dimension[1], 1])
        ir_img3[x] = images[x][:, :, :, 2]
        ir_img3[x] = ir_img3[x].reshape([1, dimension[0], dimension[1], 1])
    print('img shape final:', ir_img1[0].shape)

    dimension = images[0].shape
    TRAIN_TAIL_SIZE_X = 32
    TRAIN_TAIL_SIZE_Y = 32
    TILES_X = (int)(dimension[1] / TRAIN_TAIL_SIZE_X)
    TILES_Y = (int)(dimension[2] / TRAIN_TAIL_SIZE_Y)
    INPUT_SHAPE_TILE = (1, TRAIN_TAIL_SIZE_X, TRAIN_TAIL_SIZE_Y, 1)

    with tf.Graph().as_default(), tf.Session() as sess:
        images_field = ["" for x in range(size)]
        for x in range(0, size):
            images_field[x] = tf.placeholder(tf.float32,
                                             shape=INPUT_SHAPE_TILE)

        dfn = DenseFuseNet(model_pre_path)

        output_image = dfn.transform_addition(images_field)
        # restore the trained model and run the style transferring
        saver = tf.train.Saver()
        saver.restore(sess, model_path)

        dimension = images[0].shape
        output1 = np.zeros([1, dimension[1], dimension[2]])
        output2 = np.zeros([1, dimension[1], dimension[2]])
        output3 = np.zeros([1, dimension[1], dimension[2]])
        for tile_x in range(TILES_X):
            for tile_y in range(TILES_Y):
                x1 = tile_x * TRAIN_TAIL_SIZE_X
                y1 = tile_y * TRAIN_TAIL_SIZE_Y
                x2 = x1 + TRAIN_TAIL_SIZE_X
                y2 = y1 + TRAIN_TAIL_SIZE_Y
                tile_img1 = ["" for x in range(size)]
                tile_img2 = ["" for x in range(size)]
                tile_img3 = ["" for x in range(size)]
                for x in range(0, size):
                    tile_img1[x] = ir_img1[x][:, x1:x2, y1:y2, :]
                    tile_img2[x] = ir_img2[x][:, x1:x2, y1:y2, :]
                    tile_img3[x] = ir_img3[x][:, x1:x2, y1:y2, :]
                output1_t = sess.run(
                    output_image,
                    feed_dict={i: d
                               for i, d in zip(images_field, tile_img1)})
                output2_t = sess.run(
                    output_image,
                    feed_dict={i: d
                               for i, d in zip(images_field, tile_img2)})
                output3_t = sess.run(
                    output_image,
                    feed_dict={i: d
                               for i, d in zip(images_field, tile_img3)})

                output1_t = output1_t.reshape(
                    [1, TRAIN_TAIL_SIZE_X, TRAIN_TAIL_SIZE_Y])
                output2_t = output2_t.reshape(
                    [1, TRAIN_TAIL_SIZE_X, TRAIN_TAIL_SIZE_Y])
                output3_t = output3_t.reshape(
                    [1, TRAIN_TAIL_SIZE_X, TRAIN_TAIL_SIZE_Y])
                output1[0, x1:x2, y1:y2] = output1_t
                output2[0, x1:x2, y1:y2] = output2_t
                output3[0, x1:x2, y1:y2] = output3_t

        output = np.stack((output1, output2, output3), axis=-1)
        output = np.transpose(output, (0, 2, 1, 3))
        save_images(images_path,
                    output,
                    output_path,
                    prefix='fused' + str(index),
                    suffix='_densefuse_addition_patch_based')
def _handler_rgb(images_path,
                 model_path,
                 model_pre_path,
                 index,
                 output_path=None):
    size = len(images_path)
    images = ["" for x in range(size)]
    ir_img1 = ["" for x in range(size)]
    ir_img2 = ["" for x in range(size)]
    ir_img3 = ["" for x in range(size)]
    for x in range(0, size):
        images[x] = get_train_images_rgb(images_path[x], flag=False)
        dimension = images[x].shape

        images[x] = images[x].reshape(
            [1, dimension[0], dimension[1], dimension[2]])
        images[x] = np.transpose(images[x], (0, 2, 1, 3))

        ir_img1[x] = images[x][:, :, :, 0]
        ir_img1[x] = ir_img1[x].reshape([1, dimension[0], dimension[1], 1])
        ir_img2[x] = images[x][:, :, :, 1]
        ir_img2[x] = ir_img2[x].reshape([1, dimension[0], dimension[1], 1])
        ir_img3[x] = images[x][:, :, :, 2]
        ir_img3[x] = ir_img3[x].reshape([1, dimension[0], dimension[1], 1])
    print('img shape final:', ir_img1[0].shape)

    with tf.Graph().as_default(), tf.Session() as sess:
        images_field = ["" for x in range(size)]
        for x in range(0, size):
            images_field[x] = tf.placeholder(tf.float32,
                                             shape=ir_img1[0].shape)

        dfn = DenseFuseNet(model_pre_path)

        output_image = dfn.transform_addition(images_field)
        # restore the trained model and run the style transferring
        saver = tf.train.Saver()
        saver.restore(sess, model_path)

        output1 = sess.run(
            output_image,
            feed_dict={i: d
                       for i, d in zip(images_field, ir_img1)})
        output2 = sess.run(
            output_image,
            feed_dict={i: d
                       for i, d in zip(images_field, ir_img2)})
        output3 = sess.run(
            output_image,
            feed_dict={i: d
                       for i, d in zip(images_field, ir_img3)})

        output1 = output1.reshape([1, dimension[0], dimension[1]])
        output2 = output2.reshape([1, dimension[0], dimension[1]])
        output3 = output3.reshape([1, dimension[0], dimension[1]])

        output = np.stack((output1, output2, output3), axis=-1)
        output = np.transpose(output, (0, 2, 1, 3))
        save_images(images_path,
                    output,
                    output_path,
                    prefix='fused' + str(index),
                    suffix='_densefuse_addition')