Esempio n. 1
0
def get_visual_words(im, mask, vocabulary):
    interest_points = get_interest_points(mask)
    descriptors, _ = compute_boundary_desc(im, mask, interest_points)
    desc_count = len(descriptors)
    words = np.zeros(desc_count)
    if desc_count > 0:
        dists = euclidean_distances(descriptors, vocabulary)
        words = map(lambda i: dists[i].argmin(), range(desc_count))

    return words
Esempio n. 2
0
def get_visual_words(im, mask, vocabulary):
    interest_points = get_interest_points(mask)
    descriptors, _ = compute_boundary_desc(im, mask, interest_points)
    desc_count = len(descriptors)
    words = np.zeros(desc_count)
    if desc_count > 0:
        dists = euclidean_distances(descriptors, vocabulary)
        words = map(lambda i: dists[i].argmin(), range(desc_count))

    return words
Esempio n. 3
0
def score_results(coords, desc, search_results, names, voc, verbose=False):
    """
    Scores the 200 best results

    params
    ------
        coords:

        desc:

        search_results:

        names: ndarray,
            image database

        voc: ndarray
            vocabulary

        verbose: boolean, optional, default: False
            Make output more verbose

    returns:
        search_results: ndarray
            indxs, scores
    """
    # FIXME doxstring
    for j, (result, score) in enumerate(search_results):
        if verbose:
            print "Scoring %d / %d" % (j, len(search_results))
        im2, mask2 = get_image(names[result, 0])
        interest_points = get_interest_points(mask2)
        desc2, coords2 = compute_boundary_desc(im2,
                                               mask2,
                                               interest_points)
        if desc2:
            search_results[j, 1] += score_(desc, desc2, coords, coords2)
    idxs = search_results[:, 1].argsort()[::-1]
    return search_results[idxs, :]
Esempio n. 4
0
import load
import matplotlib.pyplot as plt
from descriptors import get_interest_points

gen = load.load_data()
_, _ = gen.next()
im, mask = gen.next()
points = get_interest_points(mask, min_dist=40)

plt.figure()
plt.imshow(im)
plt.scatter(points[:, 1], points[:, 0])