Esempio n. 1
0
    def source_competence(self):
        """The source of competence C_src at the validation point :math:`\mathbf{x}_{k}` is calculated by
        logarithm function in the support obtained by the base classifier.

        Returns
        ----------
        C_src : array of shape = [n_samples, n_classifiers]
                The competence source for each base classifier at each data point.
        """
        C_src = np.zeros((self.n_samples, self.n_classifiers))
        for clf_index in range(self.n_classifiers):
            supports = self.dsel_scores[:, clf_index, :]
            support_correct = supports[np.arange(self.n_samples),
                                       self.DSEL_target]

            C_src[:, clf_index] = log_func(self.n_classes, support_correct)

        return C_src
Esempio n. 2
0
    def source_competence(self):
        """The source of competence C_src at the validation point xk is calculated by logarithm in the support
        obtained by the base classifier.

        Returns
        ----------
        C_src : array of shape = [n_samples, n_classifiers]
                The competence source for each base classifier at each data point.
        """
        C_src = np.zeros((self.n_samples, self.n_classifiers))
        for clf_index in range(self.n_classifiers):
            supports = self._get_scores_dsel(clf_index)
            support_correct = [
                supports[sample_idx, i]
                for sample_idx, i in enumerate(self.DSEL_target)
            ]
            support_correct = np.array(support_correct)
            C_src[:, clf_index] = log_func(self.n_classes, support_correct)

        return C_src
Esempio n. 3
0
def test_log_func_multi_class(supports_correct, expected):
    n_classes = 3
    result = log_func(n_classes, supports_correct)
    assert np.isclose(result, expected, atol=0.01)
Esempio n. 4
0
def test_log_func_two_classes(supports_correct, expected):
    n_classes = 2
    result = log_func(n_classes, supports_correct)
    assert np.isclose(result, expected)