Esempio n. 1
0
def test_brentsroot_wrong_order():
    if D.backend() == 'torch':
        import torch

        torch.set_printoptions(precision=17)

        torch.autograd.set_detect_anomaly(True)

    a = D.array(1.0)
    b = D.array(1.0)

    gt_root = -b / a
    lb, ub = -b / a - 1, -b / a + 1

    fun = lambda x: a * x + b

    assert (D.to_numpy(D.to_float(D.abs(fun(gt_root)))) <= 32 * D.epsilon())

    root, success = de.utilities.optimizer.brentsroot(fun, [ub, lb],
                                                      4 * D.epsilon(),
                                                      verbose=True)

    assert (success)
    assert (np.allclose(D.to_numpy(D.to_float(gt_root)),
                        D.to_numpy(D.to_float(root)), 32 * D.epsilon(),
                        32 * D.epsilon()))
Esempio n. 2
0
def test_brentsroot():
    for fmt in D.available_float_fmt():
        print("Set dtype to:", fmt)
        D.set_float_fmt(fmt)
        for _ in range(10):
            ac_prod = D.array(np.random.uniform(0.9, 1.1))
            a = D.array(np.random.uniform(-1, 1))
            a = D.to_float(-1 * (a <= 0) + 1 * (a > 0))
            c = ac_prod / a
            b = D.sqrt(0.01 + 4 * ac_prod)

            gt_root = -b / (2 * a) - 0.1 / (2 * a)

            ub = -b / (2 * a)
            lb = -b / (2 * a) - 1.0 / (2 * a)

            fun = lambda x: a * x**2 + b * x + c

            assert (D.to_numpy(D.to_float(D.abs(fun(gt_root)))) <=
                    32 * D.epsilon())

            root, success = de.utilities.optimizer.brentsroot(fun, [lb, ub],
                                                              4 * D.epsilon(),
                                                              verbose=True)

            assert (success)
            assert (np.allclose(D.to_numpy(D.to_float(gt_root)),
                                D.to_numpy(D.to_float(root)), 32 * D.epsilon(),
                                32 * D.epsilon()))
            assert (D.to_numpy(D.to_float(D.abs(fun(root)))) <=
                    32 * D.epsilon())
Esempio n. 3
0
def test_newtonraphson_dims(ffmt, tol, dim):
    print("Set dtype to:", ffmt)
    D.set_float_fmt(ffmt)
    np.random.seed(30)

    if tol is not None:
        tol = tol * D.epsilon()

    if D.backend() == 'torch':
        import torch

        torch.set_printoptions(precision=17)

        torch.autograd.set_detect_anomaly(False)

    if ffmt == 'gdual_vdouble':
        pytest.skip("Root-finding is ill-conceived with vectorised gduals")

    shift = D.array(np.random.uniform(1, 10, size=(dim, )))
    exponent = D.array(np.random.uniform(1, 5, size=(dim, )))
    gt_root1 = shift**(1 / exponent)
    gt_root2 = -shift**(1 / exponent)

    def fun(x):
        return x**exponent - shift

    def jac(x):
        return D.diag(exponent * D.reshape(x, (-1, ))**(exponent - 1))

    x0 = D.array(np.random.uniform(1, 3, size=(dim, )))
    print(gt_root1, gt_root2)
    print(x0)
    print(fun(x0))
    print(jac(x0))

    root, (success, num_iter,
           prec) = de.utilities.optimizer.newtonraphson(fun,
                                                        x0,
                                                        jac=jac,
                                                        tol=tol,
                                                        verbose=True)

    if tol is None:
        tol = D.epsilon()
    assert (success)
    conv_root1 = D.stack([
        D.array(np.allclose(D.to_numpy(D.to_float(r1)),
                            D.to_numpy(D.to_float(r)), 128 * tol, 32 * tol),
                dtype=D.bool) for r, r1 in zip(root, gt_root1)
    ])
    conv_root2 = D.stack([
        D.array(np.allclose(D.to_numpy(D.to_float(r2)),
                            D.to_numpy(D.to_float(r)), 128 * tol, 32 * tol),
                dtype=D.bool) for r, r2 in zip(root, gt_root2)
    ])
    assert (D.all(conv_root1 | conv_root2))
Esempio n. 4
0
def test_brentsroot_same_sign():
    if D.backend() == 'torch':
        import torch

        torch.set_printoptions(precision=17)

        torch.autograd.set_detect_anomaly(True)

    ac_prod = D.array(np.random.uniform(0.9, 1.1))
    a = D.array(1.0)
    b = D.array(1.0)

    gt_root = -b / a
    lb, ub = -b / a - 1, -b / a - 2

    fun = lambda x: a * x + b

    assert (D.to_numpy(D.to_float(D.abs(fun(gt_root)))) <= 32 * D.epsilon())

    root, success = de.utilities.optimizer.brentsroot(fun, [lb, ub],
                                                      4 * D.epsilon(),
                                                      verbose=True)

    assert (np.isinf(root))
    assert (not success)
Esempio n. 5
0
def test_newtonraphson_pytorch_jacobian(ffmt, tol):
    print("Set dtype to:", ffmt)
    D.set_float_fmt(ffmt)
    np.random.seed(21)

    if tol is not None:
        tol = tol * D.epsilon()

    if D.backend() == 'torch':
        import torch

        torch.set_printoptions(precision=17)

        torch.autograd.set_detect_anomaly(False)

    if ffmt == 'gdual_vdouble':
        pytest.skip("Root-finding is ill-conceived with vectorised gduals")

    for _ in range(10):
        ac_prod = D.array(np.random.uniform(0.9, 1.1))
        a = D.array(np.random.uniform(-1, 1))
        a = D.to_float(-1 * (a <= 0) + 1 * (a > 0))
        c = ac_prod / a
        b = D.sqrt(0.01 + 4 * ac_prod)

        gt_root1 = -b / (2 * a) - 0.1 / (2 * a)
        gt_root2 = -b / (2 * a) + 0.1 / (2 * a)

        ub = -b / (2 * a) - 0.2 / (2 * a)
        lb = -b / (2 * a) - 0.4 / (2 * a)

        x0 = D.array(np.random.uniform(ub, lb))

        fun = lambda x: a * x**2 + b * x + c

        assert (D.to_numpy(D.to_float(D.abs(fun(gt_root1)))) <=
                32 * D.epsilon())
        assert (D.to_numpy(D.to_float(D.abs(fun(gt_root2)))) <=
                32 * D.epsilon())

        root, (success, num_iter,
               prec) = de.utilities.optimizer.newtonraphson(fun,
                                                            x0,
                                                            tol=tol,
                                                            verbose=True)

        if tol is None:
            tol = D.epsilon()
        conv_root1 = np.allclose(D.to_numpy(D.to_float(gt_root1)),
                                 D.to_numpy(D.to_float(root)), 128 * tol,
                                 32 * tol)
        conv_root2 = np.allclose(D.to_numpy(D.to_float(gt_root2)),
                                 D.to_numpy(D.to_float(root)), 128 * tol,
                                 32 * tol)
        print(conv_root1, conv_root2, root, gt_root1, gt_root2, x0,
              root - gt_root1, root - gt_root2, num_iter, prec)

        assert (success)
        assert (conv_root1 or conv_root2)
        assert (D.to_numpy(D.to_float(D.abs(fun(root)))) <= 32 * tol)
Esempio n. 6
0
def test_brentsrootvec(ffmt, tol):
    print("Set dtype to:", ffmt)
    D.set_float_fmt(ffmt)
    if tol is not None:
        tol = tol * D.epsilon()

    if D.backend() == 'torch':
        import torch

        torch.set_printoptions(precision=17)

        torch.autograd.set_detect_anomaly(True)

    if ffmt == 'gdual_vdouble':
        pytest.skip("Root-finding is ill-conceived with vectorised gduals")

    for _ in range(10):
        slope_list = D.array(
            np.copysign(np.random.uniform(0.9, 1.1, size=25),
                        np.random.uniform(-1, 1, size=25)))
        intercept_list = slope_list

        gt_root_list = -intercept_list / slope_list

        fun_list = [(lambda m, b: lambda x: m * x + b)(m, b)
                    for m, b in zip(slope_list, intercept_list)]

        assert (all(
            map((lambda i: D.to_numpy(D.to_float(D.abs(i))) <= 32 * D.epsilon(
            )), map((lambda x: x[0](x[1])), zip(fun_list, gt_root_list)))))

        root_list, success = de.utilities.optimizer.brentsrootvec(
            fun_list, [D.min(gt_root_list) - 1.,
                       D.max(gt_root_list) + 1.],
            tol,
            verbose=True)

        assert (np.all(D.to_numpy(success)))
        assert (np.allclose(D.to_numpy(D.to_float(gt_root_list)),
                            D.to_numpy(D.to_float(root_list)),
                            32 * D.epsilon(), 32 * D.epsilon()))

        assert (all(
            map((lambda i: D.to_numpy(D.to_float(D.abs(i))) <= 32 * D.epsilon(
            )), map((lambda x: x[0](x[1])), zip(fun_list, root_list)))))
Esempio n. 7
0
def test_brentsroot(ffmt, tol):
    print("Set dtype to:", ffmt)
    D.set_float_fmt(ffmt)

    if tol is not None:
        tol = tol * D.epsilon()

    if D.backend() == 'torch':
        import torch

        torch.set_printoptions(precision=17)

        torch.autograd.set_detect_anomaly(True)

    for _ in range(10):
        ac_prod = D.array(np.random.uniform(0.9, 1.1))
        a = D.array(np.random.uniform(-1, 1))
        a = D.to_float(-1 * (a <= 0) + 1 * (a > 0))
        c = ac_prod / a
        b = D.sqrt(0.01 + 4 * ac_prod)

        gt_root = -b / (2 * a) - 0.1 / (2 * a)

        ub = -b / (2 * a)
        lb = -b / (2 * a) - 1.0 / (2 * a)

        fun = lambda x: a * x**2 + b * x + c

        assert (D.to_numpy(D.to_float(D.abs(fun(gt_root)))) <=
                32 * D.epsilon())

        root, success = de.utilities.optimizer.brentsroot(fun, [lb, ub],
                                                          tol,
                                                          verbose=True)

        assert (success)
        assert (np.allclose(D.to_numpy(D.to_float(gt_root)),
                            D.to_numpy(D.to_float(root)), 32 * D.epsilon(),
                            32 * D.epsilon()))
        assert (D.to_numpy(D.to_float(D.abs(fun(root)))) <= 32 * D.epsilon())
Esempio n. 8
0
def test_brentsrootvec():
    for fmt in D.available_float_fmt():
        print("Set dtype to:", fmt)
        D.set_float_fmt(fmt)
        if fmt == 'gdual_vdouble':
            continue
        for _ in range(10):
            slope_list = D.array(
                np.copysign(np.random.uniform(0.9, 1.1, size=25),
                            np.random.uniform(-1, 1, size=25)))
            intercept_list = slope_list

            gt_root_list = -intercept_list / slope_list

            fun_list = [(lambda m, b: lambda x: m * x + b)(m, b)
                        for m, b in zip(slope_list, intercept_list)]

            assert (all(
                map((lambda i: D.to_numpy(D.to_float(D.abs(i))) <= 32 * D.
                     epsilon()),
                    map((lambda x: x[0](x[1])), zip(fun_list, gt_root_list)))))

            root_list, success = de.utilities.optimizer.brentsrootvec(
                fun_list, [D.min(gt_root_list) - 1.,
                           D.max(gt_root_list) + 1.],
                4 * D.epsilon(),
                verbose=True)

            assert (np.all(D.to_numpy(success)))
            assert (np.allclose(D.to_numpy(D.to_float(gt_root_list)),
                                D.to_numpy(D.to_float(root_list)),
                                32 * D.epsilon(), 32 * D.epsilon()))

            assert (all(
                map((lambda i: D.to_numpy(D.to_float(D.abs(i))) <= 32 * D.
                     epsilon()),
                    map((lambda x: x[0](x[1])), zip(fun_list, root_list)))))
Esempio n. 9
0
def test_to_numpy():
    a = np.array([1.0, 2.0, 3.0])
    a_torch = D.array(a)
    assert (np.all(np.stack([a, a]) == D.to_numpy([a_torch, a_torch])))