Esempio n. 1
0
def shape_check(self):
    """Check to see if the imported hybrids have the same shape

    Parameters
    ==========
    self (SXDMFrameset)
        the sxdmframeset used

    Returns
    =======
    Nothing. Prints Important Data
    """
    try:
        # Return the hybrid x and y data
        hybrid_x = return_det(self.file, self.scan_numbers,
                              group='hybrid_x')[0]
        hybrid_y = return_det(self.file, self.scan_numbers,
                              group='hybrid_y')[0]

        # Determine the shape of the arrays
        shape_hybrid_x = np.shape(hybrid_x)
        shape_hybrid_y = np.shape(hybrid_y)

        len_x = len(shape_hybrid_x)
        len_y = len(shape_hybrid_y)

        # Make sure shapes are the same
        if len_x != 3 and len_y != 3:
            warnings.warn('Scan Shapes Are Not The Same!')
            self.shape_checker = False
        else:
            self.shape_checker = True
            print('Hybrid Scan Shapes Are Equivalent')

    # If you can't import throw error to User
    except Exception as ex:
        print('shape_check', ex, '\n')

        for i, array in enumerate(hybrid_x):
            print('Shapes Of All Imported Scans')
            print(self.scan_numbers[i], np.shape(array))
        warnings.warn(
            'Cannot Check Shape. Some .mda Files Might Be Missing...')
Esempio n. 2
0
def grab_fov_dimensions(self):
    """Returns the image dimensions for the User

    Parameters
    ==========
    self (SXDMFrameset)
        the sxdmframeset

    Returns
    =======
    the np.shape() of the fluorescence images - which are identical for the the entire field of view
    """
    image = return_det(self.file,
                       self.scan_numbers,
                       group='fluor',
                       default=True)
    return np.shape(image[0])
Esempio n. 3
0
def centering_det(self,
                  group='fluor',
                  center_around=False,
                  summed=False,
                  default=False):
    """Return a detector that has been centered around a set value

    Parameters
    ==========
    self (SXDMFrameset)
        the sxdmframeset
    group (str)
        the group name the user would like to center to - acc_vals = fluor and roi
    center_around (bool)
        if this equals -1 then there will be no centering adjustments
    summed (bool)
        if True it will sum together all scans after centering
    default (bool)
        if True it will set the fluor image to center on or roi image to view to the first index

    Returns
    =======
    an array of the fluor images or the roi images for all the SXDMFrameset scans centered around
    the users value
    """

    if center_around == False:
        center_around = set_centering(self)
    else:
        pass
    # Grab the User defined detector images
    array = return_det(file=self.file,
                       scan_numbers=self.scan_numbers,
                       group=group,
                       default=default)[0]

    # Center them around a User defined index
    if center_around != -1:
        ims = array_shift(self, array, center_around)
    else:
        ims = array
    if summed == False:
        return ims
    elif summed == True:
        return np.sum(ims, axis=0)
Esempio n. 4
0
def image_numbers(self):
    """Grab the image numbers

    Parameters
    ==========
    self (SXDMFrameset)
        the sxdmframset

    Returns
    =======
    all of the diffraction image numbers for each scan in a 3D matrix
    """
    filenumbers = return_det(self.file, self.scan_numbers,
                             group='filenumber')[0]
    int_filenumbers = {}
    for i, scan in enumerate(filenumbers):
        int_filenumbers[self.scan_numbers[i]] = np.asarray(scan).astype(int)

    return int_filenumbers
Esempio n. 5
0
def max_det_val(self, detector='fluor'):
    """Used to determine the max values for a given detector channel

    Parameters
    ==========
    self (SXDMFrameset)
        the sxdmframeset
    detector (str)
        value to be passed into the return_det() function

    Returns
    =======
    the max values for all scans for a given detector channel input
    """
    if h5path_exists(self.file, 'detector_channels/' + detector) == True:
        data = return_det(self.file, self.scan_numbers, group=detector)
        max_array = [np.max(array) for array in data[0]]
        return max_array
    else:
        warnings.warng('Path Does Not Exist')
Esempio n. 6
0
def alignment_function(self):
    """Allows the user to align the scans based on Fluorescence or Region Of Interest.

    Sets alignment variables and stores them in designated .h5 file. Easier to reload alignment data
    or redo alignment data

    Parameters
    ==========
    self: (SXDMFrameset)
        the sxdmframeset object

    Returns
    =======
    Nothing
    """

    # Check to see if /dxdy group exsists if not make it and set attributes
    if h5path_exists(file=self.file, loc=self.dataset_name + '/dxdy') == True:
        warnings.warn('Previous Data Found')
        redo_alignment = input('Previous Data Found. Redo Alignment? y/n ')

        # Determining if User wants to reload or redo alignment
        if redo_alignment == 'y':
            start_alignment = 'y'
            try:
                self.alignment_group = h5read_attr(
                    file=self.file,
                    loc=self.dataset_name + '/dxdy',
                    attribute_name='alignment_group')

                self.alignment_subgroup = h5read_attr(
                    file=self.file,
                    loc=self.dataset_name + '/dxdy',
                    attribute_name='alignment_subgroup')
            except Exception as ex:
                print('alignment.py/alignment_function 1', ex)

        # If no redo and no start, save those choices
        else:
            start_alignment = 'n'
            redo_alignment = 'n'

    else:
        start_alignment = 'y'
        redo_alignment = 'n'

    # Initialize the alignment process if we are starting the alignment
    if start_alignment == 'y':
        if start_alignment == 'y' and redo_alignment == 'n':
            init_dxdy(self)
        else:
            try:
                # Try to pull previous alignment data - if you can't throw error to the user
                print('Previous Alignment Done On - {} - {}'.format(
                    self.alignment_group, self.alignment_subgroup))
            except Exception as ex:
                print('alignment.py/alignment_function 2', ex)

            # Grabbing old alignment and setting alignment circles
            retrieve_old_data = array2dic(array=h5grab_data(
                file=self.file, data_loc=self.dataset_name + '/dxdy'))
            warnings.warn('Refreshing Old Alignment Data')

            if len(retrieve_old_data.keys()) > len(self.scan_numbers):
                warnings.warn(
                    'Saved Alignment Has More Scans Than Current Import - Please Set reset=True'
                )

        # Create variables to store data
        self.clicks = {}
        self.correction_store = {}
        plt.close('all')
        cont = True

        # Ask which images the user wants to align to
        while cont == True:
            user_val = input('Would You Like To Align On fluor Or roi? ')
            if user_val in ['fluor', 'roi']:
                cont = False
            else:
                warnings.warn('Please Type In An Acceptable Values: ')

        # Grab data and set alignment data
        det_return = return_det(file=self.file,
                                scan_numbers=self.scan_numbers,
                                group=user_val)

        # Setting up figure data
        images = det_return[0]
        self.alignment_subgroup = det_return[1]
        self.alignment_group = user_val
        self.max_images = np.shape(images)[0]
        starting = figure_size_finder(images=images)

        plt.close('all')

        # Setting up initial figure for alignment
        fig, axs = plt.subplots(starting,
                                starting,
                                figsize=(10, 10),
                                facecolor='w',
                                edgecolor='k')

        # Try to ravel axis - if data is 1D continue to the except code
        try:
            self.loc_axs = axs.ravel()

        except:
            warnings.warn(
                'Ravel Function Not Called. Possible 1D Image Trying To Load')
            self.loc_axs = [axs]
        axs_store = []

        # Set up saving, and click functions into partials
        saving = partial(save_alignment, self=self)
        initiate = partial(onclick_1, self=self)
        click1 = partial(fig1_click, self=self, fig=fig, images=images)

        # Display circles for alignment
        for i, image in enumerate(images):
            self.loc_axs[i].imshow(image)
            axs_store.append(self.loc_axs[i].get_position())

        if redo_alignment == 'y':
            for num, old_ax in enumerate(retrieve_old_data):
                old_clicks = retrieve_old_data[old_ax]
                circ = Circle((old_clicks[0], old_clicks[1]), 0.3, color='r')
                self.loc_axs[old_ax].add_patch(circ)

        plt.suptitle('Please Click On Any Of The Images Below')
        plt.show()

        # Based on the Users clicks display different information
        fig.canvas.mpl_connect('button_press_event', initiate)
        fig.canvas.mpl_connect('button_press_event', click1)
        fig.canvas.mpl_connect('button_press_event', saving)

    elif redo_alignment == 'n':
        print('Staying With Current Alignment Parameters')
Esempio n. 7
0
def return_chi_images_loc(
    file,
    chi_figures,
    detector_channel_loc='detector_channels/detector_scan/Main_Scan',
    zfill_num=4,
):
    """Grabs the image location for the detector sweep scan

    Parameters
    ==========
    file: (str)
        the .h5 file associated with the dataset

    chi_figures: (Chi_FigureClass)
        the Chi_FigureClass allowing transfer of data from figure to figure

    detector_channel_loc: (str)
        the h5 group location to the detector sweep scan used for chi bounds determination

    zfill_num: (int)
        the integer value for how many digits the scan number must have


    Returns
    =======
    Nothing - sets the chi_figures.scan_theta and chi_figures.images_location valuess
    """

    # Attempt to pull chi determination scan information
    try:
        # Grab the detector channel data
        scan = h5grab_data(file=file, data_loc=detector_channel_loc)
        scan_str = str(scan).zfill(zfill_num)

        # Grab the scans in the images and mda group
        im_loc = h5grab_data(file=file, data_loc='images/{}'.format(scan_str))
        mda_loc = h5grab_data(file=file, data_loc='mda/{}'.format(scan_str))

        # See if the images or mda group exsists
        im_check = h5path_exists(file=file, loc='images/{}'.format(scan_str))
        mda_check = h5path_exists(file=file, loc='mda/{}'.format(scan_str))

        # Formatting the image locations
        images_loc = ['images/{}/{}'.format(scan_str, loc) for loc in im_loc]
        chi_figures.images_location = images_loc

        # Based on what the user rocked to get the chi scan this will pull different values
        if chi_figures.user_rocking == 'spl':
            theta = return_det(file=file,
                               scan_numbers=[scan_str],
                               group='sample_theta')
            chi_figures.scan_theta = theta[0]

        elif chi_figures.user_rocking == 'det':
            det_find = 'D' + str(
                h5grab_data(file=file,
                            data_loc='detector_channels/mis/2Theta')).zfill(2)
            theta = h5grab_data(file=file,
                                data_loc='/mda/{}/{}'.format(
                                    scan_str, det_find))
            sh = np.shape(theta)
            theta = np.reshape(theta, (1, sh[0] * sh[1]))[0]
            chi_figures.scan_theta = theta

    # Throw error if the program cannot pull info
    except Exception as ex:
        print('chi_determination.py/return_chi_images_loc', ex)
        warnings.warn(
            'You Have Failed To Load In The Correct Detector Channel. '
            'Correct The detector_channel_loc or Import Correct Data')
        chi_figures.images_location = None

    # Throw error if the images or mda group does not exist
    if im_check == False or mda_check == False:
        warnings.warn(
            'You Have Failed To Load In The Correct Detector Channel. '
            'Correct The detector_channel_loc or Import Correct Data '
            'im_check: {} - mda_check: {}'.format(im_check, mda_check))
        chi_figures.images_location = None
Esempio n. 8
0
def resolution_check(self, user_resolution_um=0.0005):
    """Check if all X dimensions for all scans are equal to each other.
    Also checks in all y dimensions for all scans are equal to each other.
    Then checks if the x and y are equal to one another.

    Parameters
    ==========
    self (SXDMFramset)
        the sxdmframset

    user_resolution_um (float)
        the resolution in um the user would like the scan dimensions for

    Returns
    =======
    Nothing - sets resolution values
    """
    try:
        # Grab the hybrid x and y data
        hybrid_x = return_det(self.file,
                              self.scan_numbers,
                              group='hybrid_x',
                              dim_correction=False)[0]
        hybrid_y = return_det(self.file,
                              self.scan_numbers,
                              group='hybrid_y',
                              dim_correction=False)[0]

        self.resolution_hybrid_x = hybrid_x
        self.resolution_hybrid_y = hybrid_y

        # Get all shapes of arrays
        shape_hybrid_x = np.asarray([np.shape(scan)
                                     for scan in hybrid_x]) - [1, 1]
        shape_hybrid_y = np.asarray([np.shape(scan)
                                     for scan in hybrid_y]) - [1, 1]

        # Determine the max value
        max_x = np.asarray([np.max(scan, axis=(0, 1)) for scan in hybrid_x])
        min_x = np.asarray([np.min(scan, axis=(0, 1)) for scan in hybrid_x])

        # Determine the min value
        max_y = np.asarray([np.max(scan, axis=(0, 1)) for scan in hybrid_y])
        min_y = np.asarray([np.min(scan, axis=(0, 1)) for scan in hybrid_y])

        #Determine difference between min and max value
        dif_x = max_x - min_x
        dif_y = max_y - min_y

        res_x = []
        res_y = []

        # For each difference between min and max values divide them by the array dimensions
        for i, value in enumerate(dif_x):
            len_hybrid_x = shape_hybrid_x[i][1]
            len_hybrid_y = shape_hybrid_y[i][0]
            current_x = dif_x[i]
            current_y = dif_y[i]
            res_x.append(current_x / len_hybrid_x)
            res_y.append(current_y / len_hybrid_y)

        # Finding the resolutions for each scan
        dif_res_x = [res_x[0] - step for step in res_x]
        dif_res_y = [res_y[0] - step for step in res_y]

        # Make sure the resolutions are all all identical and within the User selected resolution
        validation_x = val_check(dif_res_x, user_resolution_um)
        validation_y = val_check(dif_res_y, user_resolution_um)

        print('Pixel X Dimension: {}nm\nPixel Y Dimension: {}nm'.format(
            np.median(res_x) * 1000,
            np.median(res_y) * 1000))
        # Store values for testing code
        self.res_x = np.median(res_x) * 1000
        self.res_y = np.median(res_y) * 1000
        self.all_res_x = res_x
        self.all_res_y = res_y
        self.validation_x = validation_x
        self.validation_y = validation_y

        if validation_x == True and validation_y == True:
            print('All X and All Y Resolutions are within ' +
                  str(user_resolution_um * 1000) +
                  ' nanometers from each other respectivley')
        else:
            if validation_x != True and validation_y != True:
                warnings.warn('Resolution in X and Y Differ Between Scans')
            elif validation_x == True and validation_y != True:
                warnings.warn('Resolution in Y Differ Between Scans')
            elif validation_x != True and validation_y == True:
                warnings.warn('Resolution in X Differ Between Scans')

        res_difference = abs(self.res_x - self.res_y) <= (user_resolution_um *
                                                          1000)
        if res_difference == True:
            print('X And Y Resolutions Are Within {} nm Of Each Other'.format(
                user_resolution_um * 1000))
        elif res_difference == False:
            warnings.warn(
                'X And Y Resolutions Are NOT Within {} nm Of Each Other\n'
                'Plots will need to be corrected'.format(user_resolution_um *
                                                         1000))

    except Exception as ex:
        print('mis.py/resolution_check', ex)
        warnings.warn(
            'Cannot Check Resolution. Some .mda Files Might Be Missing...')