def chart(self, query): result = detect.process(query) airlines = {} for row in result: airline = row[4] if airline not in airlines: airlines[airline] = 0 airlines[airline] += 1 out = { 'name': 'airports', 'children': [] } for airline in airlines: group = { 'name': 'flights-for-' + airline, 'children': [ { 'name': airline, 'size': 100*airlines[airline]/len(result) } ] } out['children'].append(group) return json.dumps(out)
def chart_large(self, query): result = detect.process(query) out = 'price,price2,airline\n' for row in result: out += row[3] + ',' + str(float(row[3]) + random.random()*250) + ',' + row[4] + '\n' return out
def chart_large(self, query): result = detect.process(query) out = 'price,price2,airline\n' for row in result: out += row[3] + ',' + str(float(row[3]) + random.random() * 250) + ',' + row[4] + '\n' return out
def chart(self, query): result = detect.process(query) airlines = {} for row in result: airline = row[4] if airline not in airlines: airlines[airline] = 0 airlines[airline] += 1 out = {'name': 'airports', 'children': []} for airline in airlines: group = { 'name': 'flights-for-' + airline, 'children': [{ 'name': airline, 'size': 100 * airlines[airline] / len(result) }] } out['children'].append(group) return json.dumps(out)
filesNames = listDirectory(options.dirname) class_dict = eval(open("../bayes/dictionnary.txt").read()) haarc = haar.haarInit(os.path.dirname(os.path.realpath(__file__)) + '/../haar/cascade.xml') trainData = [] responses = [] total = len(filesNames) i = 1 for fileName in filesNames: print "{0} / {1}".format(i,total) i = i+1 _,_,densityVect = detect.process(detect.loadSample(fileName),haarc,True) if densityVect is None: continue trainData.append(densityVect) responses.append(class_dict[fileName]) matrixData = np.matrix(trainData).astype('float32') matrixResp = np.matrix(responses) classifier = cv2.NormalBayesClassifier() classifier.train(matrixData,matrixResp)
def process_query(self, query): ## do something with the query result = detect.process(query) return json.dumps(result)