Esempio n. 1
0
    def get_transform(self, image, annotations):
        invert_region = []
        for anno_idx, anno in enumerate(annotations):
            do = rand_by_rate(self.prob[anno["category_id"]])
            if do:
                side_w_do = rand_by_rate(self.side_rate_w)
                side_h_do = rand_by_rate(self.side_rate_h)
                bbox = copy.deepcopy(anno["bbox"])
                box_w = bbox[2] - bbox[0]
                box_h = bbox[3] - bbox[1]
                #pick a region along width
                if side_w_do:
                    bbox[0] = bbox[0] + box_w * random.uniform(
                        0, self.left_side_upper_bound)
                    bbox[2] = bbox[2] - box_w * (
                        1 - random.uniform(self.right_side_lower_bound, 1))
                #pick a region along height
                if side_h_do:
                    bbox[1] = bbox[1] + box_h * random.uniform(
                        0, self.left_side_upper_bound)
                    bbox[3] = bbox[3] - box_h * (
                        1 - random.uniform(self.right_side_lower_bound, 1))

                bbox = list(map(int, bbox))
                invert_region.append(bbox)

        if len(invert_region) == 0:
            return NoOpTransform()
        else:
            return BoxContrastTransform(invert_region)
Esempio n. 2
0
    def get_transform(self, image, annotations):
        fill_region = []
        for anno in annotations:
            do = rand_by_rate(self.prob)
            if do:
                bbox = anno["bbox"]
                #assert(bbox[0]<bbox[2] and bbox[1]<bbox[3])
                #compute a region to fill
                box_w = bbox[2] - bbox[0]
                box_h = bbox[3] - bbox[1]
                if box_w < 20 or box_h < 20:
                    continue

                region_box = []
                region_w = random.randint(1, box_w // 2)
                region_h = random.randint(1, box_h // 2)
                region_left = random.randint(1, box_w // 2)
                region_top = random.randint(1, box_h // 2)

                region_box.append(region_left + bbox[0])
                region_box.append(region_top + bbox[1])
                region_box.append(region_left + bbox[0] + region_w)
                region_box.append(region_top + bbox[1] + region_h)

                region_box = list(map(int, region_box))
                fill_region.append(region_box)

        if len(fill_region) == 0:
            return NoOpTransform()
        else:
            return BoxEraseTransform(fill_region)
Esempio n. 3
0
    def get_transform(self, image, annotations):
        mosaic_direction = []
        for i in range(self.max_move):
            do = rand_by_rate(self.prob)
            if not do:
                continue
            #mosaic to right or bottom
            mosaic_right = rand_by_rate(0.5)
            if mosaic_right:
                mosaic_direction.append("right")
            else:
                mosaic_direction.append("bottom")

        if len(mosaic_direction) == 0:
            return NoOpTransform()
        else:
            return MosaicTransform(mosaic_direction, annotations)
Esempio n. 4
0
    def get_transform(self, image):
        do = rand_by_rate(self.prob)
        if do:
            rate = random.uniform(self.min_rate, self.max_rate)

            return NoiseTransform(rate)
        else:
            return NoOpTransform()
Esempio n. 5
0
 def get_transform(self, image):
     do = rand_by_rate(self.prob)
     if do:
         h, w = image.shape[:2]
         dst_w, dst_h = adjust_scale(
             (w, h), self.min_ratio, self.max_ratio, self.balanced_point,
             self.balanced_transform, self.keep_same_size)
         return ResizeTransform(h, w, dst_h, dst_w)
     else:
         return NoOpTransform()
Esempio n. 6
0
    def get_transform(self, image, annotations):
        img_h, img_w = image.shape[:2]
        move_info = []  # anno_id:[]
        moved_once = False
        for idx, anno in enumerate(annotations):
            anno_trans_info = {}
            anno_trans_info["anno_id"] = idx
            # some classes dont need to move
            if self.prob[anno["category_id"]] == 0:
                continue

            just_remove_it = rand_by_rate(self.remove_rate)

            anno_move_info = []
            for _ in range(self.max_move):
                do = rand_by_rate(self.prob[anno["category_id"]])
                if not do:
                    continue

                moved_once = True
                single_move_info = {}
                single_move_info["raw_box_coor"] = anno["bbox"]
                # set rescale ratio
                box_w = int(anno["bbox"][2] - anno["bbox"][0])
                box_h = int(anno["bbox"][3] - anno["bbox"][1])
                dst_size = adjust_scale((box_w, box_h), self.min_move_rescale,
                                        self.max_move_rescale,
                                        self.balanced_point,
                                        self.balanced_transform, True)
                dst_size[0] = min(dst_size[0], img_w)
                dst_size[1] = min(dst_size[1], img_h)
                single_move_info["dst_size"] = dst_size
                # start move process
                mv_side = rand_by_rate(self.side_rate)
                #move to side
                to_paste_point = [-1, -1]  # left top
                if mv_side:
                    if rand_by_rate(0.5):  #top
                        to_paste_point[0] = max(
                            0, anno["bbox"][0] - (dst_size[0] - box_w) / 2)
                        to_paste_point[1] = max(0,
                                                anno["bbox"][1] - dst_size[1])
                    else:  #bottom
                        to_paste_point[0] = max(
                            0, anno["bbox"][0] - (dst_size[0] - box_w) / 2)
                        to_paste_point[1] = min(anno["bbox"][3],
                                                img_h - dst_size[1])
                #move to anywhere
                else:
                    to_paste_point = get_paste_point((img_w, img_h), dst_size)

                single_move_info["to_paste_point"] = to_paste_point

                anno_move_info.append(single_move_info)

            anno_trans_info["anno_move_info"] = anno_move_info

            move_info.append(anno_trans_info)

        if not moved_once:
            return NoOpTransform()
        else:
            return BoxMoveTransform(move_info)
Esempio n. 7
0
    def get_transform(self, image, annotations):
        #remove some boxes
        #img, boxes, labels = utils.remove_region(img, boxes, labels, min_area, max_area)
        old_img_h, old_img_w = image.shape[:2]
        crop_h, crop_w = self.crop_size
        new_img_w = 0
        new_img_h = 0
        new_crop_w = 0
        new_crop_h = 0
        crop_left = 0
        crop_top = 0
        random_idx = -1  #which GT box to do attention
        random_class = -1  #category of this box
        categories = [anno["category_id"] for anno in annotations]
        do = rand_by_rate(self.prob) and len(annotations) > 0

        #compute crop width and height
        if do:
            if self.balance_by_cls:
                #compute how many defferent classes are contained by this img
                contain_classes = []
                for label in categories:
                    if label not in contain_classes:
                        contain_classes.append(label)
                num_classes = len(contain_classes)
                assert (num_classes > 0)
                #pick a class with same probility
                random_idx = random.randint(0, num_classes - 1)
                random_class = contain_classes[random_idx]
                #pick a GT which is this class
                contain_classes = []
                for i, label in enumerate(categories):
                    if label == random_class:
                        contain_classes.append(i)
                random_idx = contain_classes[random.randint(
                    0,
                    len(contain_classes) - 1)]
            else:
                random_idx = random.randint(0, len(categories) - 1)
                random_class = categories[random_idx]
            #select the box_resize_info param according to picked class
            info_idx = 0
            for i in range(len(self.box_resize_info)):
                if self.box_resize_info[i]['metric_class_id'] == random_class:
                    info_idx = i
                    break
            #compute crop params according to this box_resize_info
            max_rescale = self.box_resize_info[info_idx]['max_rescale']
            target_min_absolute_area = self.box_resize_info[info_idx][
                'target_min_absolute_area']
            target_max_absolute_area = self.box_resize_info[info_idx][
                'target_max_absolute_area']
            scale_idx = random.randint(0, len(target_min_absolute_area) - 1)
            #random pick an area region
            target_area = random.uniform(target_min_absolute_area[scale_idx],
                                         target_max_absolute_area[scale_idx])
            raw_area = (annotations[random_idx]["bbox"][2] -
                        annotations[random_idx]["bbox"][0]) * (
                            annotations[random_idx]["bbox"][3] -
                            annotations[random_idx]["bbox"][1])
            #final rescale ratio
            calced_rescale_ratio = target_area / raw_area
            final_resize_ratio = min(max_rescale, calced_rescale_ratio)
            #compute new size
            new_crop_w = min(int(crop_w / math.pow(final_resize_ratio, 0.5)),
                             old_img_w)
            new_crop_h = min(int(crop_h / math.pow(final_resize_ratio, 0.5)),
                             old_img_h)
        else:
            max_scale_rate = -1.
            assert (self.largest_max_absolute_area > 0)
            #compute the max box area in this img
            max_box_area = -1.
            for anno in annotations:
                max_box_area = max(max_box_area,
                                   (anno["bbox"][2] - anno["bbox"][0]) *
                                   (anno["bbox"][3] - anno["bbox"][1]))

            if max_box_area > 0:
                max_scale_rate = pow(
                    self.largest_max_absolute_area / max_box_area, 0.5)
            else:
                return NoOpTransform()

            #compute real scale size
            real_min_scale = self.min_scale
            real_max_scale = self.max_scale
            real_min_scale = min(real_min_scale, max_scale_rate)
            real_max_scale = min(real_max_scale, max_scale_rate)

            if real_min_scale < self.balanced_point and real_max_scale > self.balanced_point and self.balanced_transform:
                if rand_by_rate(0.5):
                    real_min_scale = self.balanced_point
                else:
                    real_max_scale = self.balanced_point
            final_resize_ratio = random.uniform(real_min_scale, real_max_scale)
            #compute new size
            new_crop_w = min(int(crop_w / math.pow(final_resize_ratio, 0.5)),
                             old_img_w)
            new_crop_h = min(int(crop_h / math.pow(final_resize_ratio, 0.5)),
                             old_img_h)

        #compute crop left and top
        if old_img_w == new_crop_w and old_img_h == new_crop_h:
            return NoOpTransform()
        if do:
            x_min, y_min, x_max, y_max = annotations[random_idx]["bbox"]
            #left
            if new_crop_w < x_max - x_min:
                crop_left = x_min
            else:
                random_left = max(0, int(x_max - new_crop_w))
                random_right = min(int(x_min), int(old_img_w - new_crop_w))
                if random_left >= random_right:
                    return NoOpTransform()
                crop_left = random.randint(random_left, random_right)
            #top
            if new_crop_h < y_max - y_min:
                crop_top = y_min
            else:
                crop_top = random.randint(
                    max(0, int(y_max - new_crop_h)),
                    min(int(y_min), int(old_img_h - new_crop_h)))
        else:
            crop_left = random.randint(0, old_img_w - new_crop_w + 1)
            crop_top = random.randint(0, old_img_h - new_crop_h + 1)

        #check
        if crop_left + new_crop_w > old_img_w:
            crop_left = old_img_w - new_crop_w
        if crop_top + new_crop_h > old_img_h:
            crop_top = old_img_h - new_crop_h

        return CropTransform(int(crop_left), int(crop_top), int(new_crop_w),
                             int(new_crop_h), self.min_area_rate)
Esempio n. 8
0
    def get_transform(self, image, annotations):
        along_x_info = []
        along_y_info = []
        #loop each gt box, then decide whether do shear by its category and prob
        for anno_idx, anno in enumerate(annotations):
            do_shear_x = rand_by_rate(self.shear_prob_x[anno["category_id"]])
            do_shear_y = rand_by_rate(self.shear_prob_y[anno["category_id"]])
            box_w = anno["bbox"][2] - anno["bbox"][0]
            box_h = anno["bbox"][3] - anno["bbox"][1]
            if do_shear_x:
                #compute shear params
                # compute shear length along x axis
                real_shear_min_len_x = self.shear_min_len_x
                real_shear_max_len_x = self.shear_max_len_x
                if self.shear_min_len_x < self.balanced_point and self.shear_max_len_x > self.balanced_point and self.balanced_transform:
                    if rand_by_rate(0.5):
                        real_shear_min_len_x = self.balanced_point
                    else:
                        real_shear_max_len_x = self.balanced_point
                shear_len_x = random.uniform(real_shear_min_len_x,
                                             real_shear_max_len_x)
                x_axis_shift = abs(shear_len_x) * box_h
                new_w = box_w + int(round(x_axis_shift))
                # compute rotation matrix
                # why M looks like this? transform is: new_x=x+shear_len_x*y, new_y=y. each pixel will move a distance(x_axis_shift).
                # if shear_len_x is negtive, pixel will be out of new img(new_w, h), we have to do a translation(x_axis_shift) to move it back.
                M = np.array(
                    [[1, shear_len_x, x_axis_shift if shear_len_x < 0 else 0],
                     [0, 1, 0]])
                M = get_inv_tuple_matrix(M)
                color = get_random_color()

                along_x_info.append({
                    "anno_idx": anno_idx,
                    "M": M,
                    "new_w": new_w,
                    "color": color
                })
            if do_shear_y:
                #compute shear params
                real_shear_min_len_y = self.shear_min_len_y
                real_shear_max_len_y = self.shear_max_len_y
                if self.shear_min_len_y < self.balanced_point and self.shear_max_len_y > self.balanced_point and self.balanced_transform:
                    if rand_by_rate(0.5):
                        real_shear_min_len_y = self.balanced_point
                    else:
                        real_shear_max_len_y = self.balanced_point
                shear_len_y = random.uniform(real_shear_min_len_y,
                                             real_shear_max_len_y)
                y_axis_shift = abs(shear_len_y) * box_w
                new_h = box_h + int(round(y_axis_shift))
                M = np.array(
                    [[1, 0, 0],
                     [shear_len_y, 1, y_axis_shift if shear_len_y < 0 else 0]])
                M = get_inv_tuple_matrix(M)
                color = get_random_color()

                along_y_info.append({
                    "anno_idx": anno_idx,
                    "M": M,
                    "new_h": new_h,
                    "color": color
                })

        if len(along_x_info) == 0 and len(along_y_info) == 0:
            return NoOpTransform()
        else:
            return BoxShearTransform(along_x_info, along_y_info, annotations)