Esempio n. 1
0

@pytest.fixture(scope="session")
def dims():
    return {
        'i': Dimension(name='i'),
        'j': Dimension(name='j'),
        'k': Dimension(name='k'),
        'l': Dimension(name='l'),
        's': Dimension(name='s'),
        'q': Dimension(name='q')
    }


# Testing dimensions for space and time
time = TimeDimension('time', spacing=Constant(name='dt'))
t = SteppingDimension('t', parent=time)
x = SpaceDimension('x', spacing=Constant(name='h_x'))
y = SpaceDimension('y', spacing=Constant(name='h_y'))
z = SpaceDimension('z', spacing=Constant(name='h_z'))


@pytest.fixture(scope="session")
def iters(dims):
    return [
        lambda ex: Iteration(ex, dims['i'], (0, 3, 1)),
        lambda ex: Iteration(ex, dims['j'], (0, 5, 1)),
        lambda ex: Iteration(ex, dims['k'], (0, 7, 1)),
        lambda ex: Iteration(ex, dims['s'], (0, 4, 1)),
        lambda ex: Iteration(ex, dims['q'], (0, 4, 1)),
        lambda ex: Iteration(ex, dims['l'], (0, 6, 1)),
Esempio n. 2
0
def test_full_model():

    shape = (50, 50, 50)
    spacing = [10. for _ in shape]
    nbl = 10

    # Create two-layer model from preset
    model = demo_model(preset='layers-isotropic',
                       vp_top=1.,
                       vp_bottom=2.,
                       spacing=spacing,
                       shape=shape,
                       nbl=nbl)

    # Test Model pickling
    pkl_model = pickle.dumps(model)
    new_model = pickle.loads(pkl_model)
    assert np.isclose(np.linalg.norm(model.vp.data[:] - new_model.vp.data[:]),
                      0)

    f0 = .010
    dt = model.critical_dt
    t0 = 0.0
    tn = 350.0
    time_range = TimeAxis(start=t0, stop=tn, step=dt)

    # Test TimeAxis pickling
    pkl_time_range = pickle.dumps(time_range)
    new_time_range = pickle.loads(pkl_time_range)
    assert np.isclose(np.linalg.norm(time_range.time_values),
                      np.linalg.norm(new_time_range.time_values))

    # Test Class Constant pickling
    pkl_origin = pickle.dumps(model.grid.origin)
    new_origin = pickle.loads(pkl_origin)

    for a, b in zip(model.grid.origin, new_origin):
        assert a.compare(b) == 0

    # Test Class TimeDimension pickling
    time_dim = TimeDimension(name='time',
                             spacing=Constant(name='dt', dtype=np.float32))
    pkl_time_dim = pickle.dumps(time_dim)
    new_time_dim = pickle.loads(pkl_time_dim)
    assert time_dim.spacing._value == new_time_dim.spacing._value

    # Test Class SteppingDimension
    stepping_dim = SteppingDimension(name='t', parent=time_dim)
    pkl_stepping_dim = pickle.dumps(stepping_dim)
    new_stepping_dim = pickle.loads(pkl_stepping_dim)
    assert stepping_dim.is_Time == new_stepping_dim.is_Time

    # Test Grid pickling
    pkl_grid = pickle.dumps(model.grid)
    new_grid = pickle.loads(pkl_grid)
    assert model.grid.shape == new_grid.shape

    assert model.grid.extent == new_grid.extent
    assert model.grid.shape == new_grid.shape
    for a, b in zip(model.grid.dimensions, new_grid.dimensions):
        assert a.compare(b) == 0

    ricker = RickerSource(name='src',
                          grid=model.grid,
                          f0=f0,
                          time_range=time_range)

    pkl_ricker = pickle.dumps(ricker)
    new_ricker = pickle.loads(pkl_ricker)
    assert np.isclose(np.linalg.norm(ricker.data),
                      np.linalg.norm(new_ricker.data))
so = 6  # Spatial derivatives are eighth order accurate
extent = (150., 150.)
# Grid is 2km x 2km with spacing 10m
shape = (151, 151)

dt = (1. / sqrt(2.)) / 2500.  # Where did this come from again?
# Define x and z as spatial dimentions for Sympy
x = SpaceDimension(name='x',
                   spacing=Constant(name='h_x',
                                    value=extent[0] / (shape[0] - 1)))
# Dimension called x, with constant spacing of 10 (called h_x)
z = SpaceDimension(name='z',
                   spacing=Constant(name='h_z',
                                    value=extent[1] / (shape[1] - 1)))
t = TimeDimension(name='t', spacing=Constant(name='dt', value=dt))
grid = Grid(extent=extent, shape=shape, dimensions=(x, z), time_dimension=t)

t0, tn = 0., 75.  # Start and end times in ms
ns = int(tn / dt)
time_range = TimeAxis(start=t0, stop=tn,
                      step=dt / 2.)  #Set up time axis object for ricker source

src = RickerSource(name='src', grid=grid, f0=0.100,
                   time_range=time_range)  # Ricker wavelet source
src.coordinates.data[:] = array([75., 75.])

rho = Function(name="rho", grid=grid, space_order=2)  #Bouyancy
rho.data[:] = 1 / 1900.

# k_1,2,3,4 refer to components in the stress tensor as follows: