Esempio n. 1
0
def wrap_high_level_accuracy(state):
    model = SLRModel(
        features=Features(Feature("Years", int, 1), ),
        predict=Feature("Salary", int, 1),
        location="tempdir",
    )

    train(
        model,
        {
            "Years": 0,
            "Salary": 10
        },
        {
            "Years": 1,
            "Salary": 20
        },
        {
            "Years": 2,
            "Salary": 30
        },
        {
            "Years": 3,
            "Salary": 40
        },
    )

    yield
Esempio n. 2
0
    async def test_models(self):
        with tempfile.TemporaryDirectory() as tempdir:
            # Model the HTTP API will pre-load
            model = SLRModel(
                features=Features(Feature("f1", float, 1)),
                predict=Feature("ans", int, 1),
                directory=tempdir,
            )

            # y = m * x + b for equation SLR is solving for
            m = 5
            b = 3

            # Train the model
            await train(model, *[{
                "f1": x,
                "ans": m * x + b
            } for x in range(0, 10)])

            await accuracy(
                model, *[{
                    "f1": x,
                    "ans": m * x + b
                } for x in range(10, 20)])

            async with ServerRunner.patch(HTTPService.server) as tserver:
                cli = await tserver.start(
                    HTTPService.server.cli(
                        "-insecure",
                        "-port",
                        "0",
                        "-models",
                        "mymodel=slr",
                        "-model-mymodel-directory",
                        tempdir,
                        "-model-mymodel-features",
                        "f1:float:1",
                        "-model-mymodel-predict",
                        "ans:int:1",
                    ))
                async with self.post(
                        cli,
                        f"/model/mymodel/predict/0",
                        json={
                            f"record_{x}": {
                                "features": {
                                    "f1": x
                                }
                            }
                            for x in range(20, 30)
                        },
                ) as response:
                    response = await response.json()
                    records = response["records"]
                    self.assertEqual(len(records), 10)
                    for record in records.values():
                        should_be = m * record["features"]["f1"] + b
                        prediction = record["prediction"]["ans"]["value"]
                        percent_error = abs(should_be - prediction) / should_be
                        self.assertLess(percent_error, 0.2)
Esempio n. 3
0
def wrap_noasync_accuracy(state):
    model = SLRModel(
        features=Features(Feature("Years", int, 1), ),
        predict=Feature("Salary", int, 1),
        directory="tempdir",
    )

    train(
        model,
        {
            "Years": 0,
            "Salary": 10
        },
        {
            "Years": 1,
            "Salary": 20
        },
        {
            "Years": 2,
            "Salary": 30
        },
        {
            "Years": 3,
            "Salary": 40
        },
    )

    yield
Esempio n. 4
0
 def setUpClass(cls):
     # Create a temporary directory to store the trained model
     cls.model_dir = tempfile.TemporaryDirectory()
     # Create the training data
     cls.train_data = []
     for x, y in TRAIN_DATA:
         cls.train_data.append({"X": x, "Y": y})
     # Create the test data
     cls.test_data = []
     for x, y in TEST_DATA:
         cls.test_data.append({"X": x, "Y": y})
     # Create an instance of the model
     cls.model = SLRModel(
         directory=cls.model_dir.name,
         predict=Feature("Y", float, 1),
         features=Features(Feature("X", float, 1)),
     )
Esempio n. 5
0
File: slr.py Progetto: emrul/dffml
from dffml import Features, DefFeature
from dffml.noasync import train, accuracy, predict
from dffml.model.slr import SLRModel

model = SLRModel(
    features=Features(DefFeature("f1", float, 1)),
    predict=DefFeature("ans", int, 1),
)

# Train the model
train(model, "dataset.csv")

# Assess accuracy (alternate way of specifying data source)
print("Accuracy:", accuracy(model, "dataset.csv"))

# Make prediction
for i, features, prediction in predict(model, {"f1": 0.8, "ans": 0}):
    features["ans"] = prediction["ans"]["value"]
    print(features)
Esempio n. 6
0
    async def test_scorer(self):
        with tempfile.TemporaryDirectory() as tempdir:
            model = SLRModel(
                features=Features(Feature("f1", float, 1)),
                predict=Feature("ans", int, 1),
                location=tempdir,
            )
            # y = m * x + b for equation SLR is solving for
            m = 5
            b = 3

            # Train the model
            await train(model, *[{
                "f1": x,
                "ans": m * x + b
            } for x in range(0, 10)])

            source = JSONSource(
                filename=pathlib.Path(tempdir, "source.json"),
                allowempty=True,
                readwrite=True,
            )

            # Record the source will have in it
            await save(
                source,
                *[
                    Record(
                        str(i),
                        data={"features": {
                            "f1": x,
                            "ans": (m * x) + b
                        }},
                    ) for i, x in enumerate(range(10, 20))
                ],
            )

            async with ServerRunner.patch(HTTPService.server) as tserver:
                cli = await tserver.start(
                    HTTPService.server.cli(
                        "-insecure",
                        "-port",
                        "0",
                        "-models",
                        "mymodel=slr",
                        "-model-mymodel-location",
                        tempdir,
                        "-model-mymodel-features",
                        "f1:float:1",
                        "-model-mymodel-predict",
                        "ans:int:1",
                        "-features",
                        "ans:int:1",
                        "-sources",
                        "mysource=json",
                        "-source-mysource-filename",
                        str(source.config.filename),
                        "-scorers",
                        "myscorer=mse",
                    ))
                async with self.post(cli,
                                     "/scorer/myscorer/mymodel/score",
                                     json=["mysource"]) as r:
                    self.assertEqual(await r.json(), {"accuracy": 0.0})
Esempio n. 7
0
import asyncio

from dffml import train, Features, DefFeature
from dffml.operation.output import GetSingle
from dffml.df.memory import MemoryOrchestrator
from dffml.operation.mapping import create_mapping
from dffml.operation.preprocess import literal_eval
from dffml.df.types import DataFlow, Input, InputFlow
from dffml.operation.io import AcceptUserInput, print_output
from dffml.operation.model import model_predict, ModelPredictConfig
from dffml.model.slr import SLRModel

slr_model = SLRModel(
    features=Features(DefFeature("Years", int, 1), ),
    predict=DefFeature("Salary", int, 1),
)

# This Dataflow takes input from stdio using `AcceptUserInput`
# operation. The string input which corresponds to feature `Years`
# is converted to `int`/`float` by
# `literal_eval` operation.
# `create_mapping` operation creates a mapping using the numeric output
# of `literal_eval` eg. {"Years":34}.
# The mapping is then fed to `model_predict` operation which
# uses the `slr` model trained above to make prediction. The prediction is then printed to
# stdout using `print_output` operation.
dataflow = DataFlow(
    operations={
        "get_user_input": AcceptUserInput,
        "literal_eval_input": literal_eval,
        "create_feature_map": create_mapping,