from dffml import CSVSource, Features, Feature from dffml.noasync import train, accuracy, predict from dffml_model_scratch.logisticregression import LogisticRegression model = LogisticRegression( features=Features(Feature("f1", float, 1)), predict=Feature("ans", int, 1), ) # Train the model train(model, "dataset.csv") # Assess accuracy (alternate way of specifying data source) print("Accuracy:", accuracy(model, CSVSource(filename="dataset.csv"))) # Make prediction for i, features, prediction in predict(model, {"f1": 0.8, "ans": 0}): features["ans"] = prediction["ans"]["value"] print(features)
from dffml import CSVSource, DefFeature from dffml.noasync import train, accuracy, predict from dffml_model_transformers.ner.ner_model import NERModel model = NERModel( sid=DefFeature("SentenceId", int, 1), words=DefFeature("Words", str, 1), predict=DefFeature("Tag", str, 1), model_architecture_type="distilbert", model_name_or_path="distilbert-base-cased", epochs=1, no_cuda=True, ) # Train the model train(model, "train.csv") # Assess accuracy (alternate way of specifying data source) print("Accuracy:", accuracy(model, CSVSource(filename="train.csv"))) # Make prediction for i, features, prediction in predict( model, {"SentenceID": 1, "Words": "DFFML models can do NER",}, {"SentenceID": 2, "Words": "DFFML models can do regression",}, ): features["Tag"] = prediction["Tag"]["value"] print(features)
from dffml import CSVSource, Features, Feature from dffml.noasync import train, score, predict from dffml.accuracy import MeanSquaredErrorAccuracy from dffml_model_scratch.logisticregression import LogisticRegression model = LogisticRegression( features=Features(Feature("f1", float, 1)), predict=Feature("ans", int, 1), location="tempdir", ) # Train the model train(model, "dataset.csv") # Assess accuracy (alternate way of specifying data source) scorer = MeanSquaredErrorAccuracy() print( "Accuracy:", score( model, scorer, Feature("ans", int, 1), CSVSource(filename="dataset.csv"), ), ) # Make prediction for i, features, prediction in predict(model, {"f1": 0.8, "ans": 0}): features["ans"] = prediction["ans"]["value"] print(features)
DefFeature("SepalWidth", float, 1), DefFeature("PetalLength", float, 1), DefFeature("PetalWidth", float, 1), ), predict=DefFeature("classification", int, 1), epochs=3000, steps=20000, classifications=[0, 1, 2], clstype=int, ) # Train the model train(model, "iris_training.csv") # Assess accuracy (alternate way of specifying data source) print("Accuracy:", accuracy(model, CSVSource(filename="iris_test.csv"))) # Make prediction for i, features, prediction in predict( model, { "PetalLength": 4.2, "PetalWidth": 1.5, "SepalLength": 5.9, "SepalWidth": 3.0, }, { "PetalLength": 5.4, "PetalWidth": 2.1, "SepalLength": 6.9, "SepalWidth": 3.1,
predict=Feature("Salary", int, 1), location="tempdir", ) # Train the model train(model, "train.csv") # Assess accuracy (alternate way of specifying data source) scorer = MeanSquaredErrorAccuracy() print( "Accuracy:", score( model, scorer, Feature("Salary", int, 1), CSVSource(filename="test.csv"), ), ) # Make prediction for i, features, prediction in predict( model, { "Years": 6, "Expertise": 13, "Trust": 0.7 }, { "Years": 7, "Expertise": 15, "Trust": 0.8
clstype=int, location="tempdir", ) # Train the model train(model, "iris_training.csv") # Assess accuracy (alternate way of specifying data source) scorer = ClassificationAccuracy() print( "Accuracy:", score( model, scorer, Feature("classification", int, 1), CSVSource(filename="iris_test.csv"), ), ) # Make prediction for i, features, prediction in predict( model, { "PetalLength": 4.2, "PetalWidth": 1.5, "SepalLength": 5.9, "SepalWidth": 3.0, }, { "PetalLength": 5.4, "PetalWidth": 2.1,