Esempio n. 1
0
def test_send_twice_different_field():
    g = DGLGraph()
    g.set_n_initializer(dgl.init.zero_initializer)
    g.add_nodes(2)
    g.add_edge(0, 1)

    def _message_a(edges):
        return {'a': edges.src['a']}

    def _message_b(edges):
        return {'b': edges.src['b']}

    def _reduce(nodes):
        return {
            'a': F.sum(nodes.mailbox['a'], 1),
            'b': F.sum(nodes.mailbox['b'], 1)
        }

    old_a = F.randn((2, 5))
    old_b = F.randn((2, 5))
    g.set_n_repr({'a': old_a, 'b': old_b})
    g.send((0, 1), _message_a)
    g.send((0, 1), _message_b)
    g.recv([1], _reduce)
    new_repr = g.get_n_repr()
    assert F.allclose(new_repr['a'][1], old_a[0])
    assert F.allclose(new_repr['b'][1], old_b[0])
Esempio n. 2
0
def test_send_twice_different_msg():
    g = DGLGraph()
    g.set_n_initializer(dgl.init.zero_initializer)
    g.add_nodes(3)
    g.add_edge(0, 1)
    g.add_edge(2, 1)

    def _message_a(edges):
        return {'a': edges.src['a']}

    def _message_b(edges):
        return {'a': edges.src['a'] * 3}

    def _reduce(nodes):
        return {'a': F.max(nodes.mailbox['a'], 1)}

    old_repr = F.randn((3, 5))
    g.ndata['a'] = old_repr
    g.send((0, 1), _message_a)
    g.send((0, 1), _message_b)
    g.recv(1, _reduce)
    new_repr = g.ndata['a']
    assert F.allclose(new_repr[1], old_repr[0] * 3)

    g.ndata['a'] = old_repr
    g.send((0, 1), _message_a)
    g.send((2, 1), _message_b)
    g.recv(1, _reduce)
    new_repr = g.ndata['a']
    assert F.allclose(new_repr[1],
                      F.max(F.stack([old_repr[0], old_repr[2] * 3], 0), 0))
Esempio n. 3
0
def _disabled_test_send_twice():
    # TODO(minjie): please re-enable this unittest after the send code problem is fixed.
    g = DGLGraph()
    g.add_nodes(3)
    g.add_edge(0, 1)
    g.add_edge(2, 1)

    def _message_a(edges):
        return {'a': edges.src['a']}

    def _message_b(edges):
        return {'a': edges.src['a'] * 3}

    def _reduce(nodes):
        return {'a': nodes.mailbox['a'].max(1)[0]}

    old_repr = th.randn(3, 5)
    g.ndata['a'] = old_repr
    g.send((0, 1), _message_a)
    g.send((0, 1), _message_b)
    g.recv(1, _reduce)
    new_repr = g.ndata['a']
    assert U.allclose(new_repr[1], old_repr[0] * 3)

    g.ndata['a'] = old_repr
    g.send((0, 1), _message_a)
    g.send((2, 1), _message_b)
    g.recv(1, _reduce)
    new_repr = g.ndata['a']
    assert U.allclose(new_repr[1],
                      th.stack([old_repr[0], old_repr[2] * 3], 0).max(0)[0])
Esempio n. 4
0
def test_send_recv_after_conversion():
    # test send and recv after converting from a graph with edges

    g = generate_graph()

    # nx graph
    nxg = g.to_networkx(node_attrs=['h'])
    g1 = DGLGraph()
    # some random node and edges
    g1.add_nodes(4)
    g1.add_edges([1, 2], [2, 3])
    g1.set_n_initializer(dgl.init.zero_initializer)
    g1.from_networkx(nxg, node_attrs=['h'])

    # sparse matrix
    row, col = g.all_edges()
    data = range(len(row))
    n = g.number_of_nodes()
    a = sp.coo_matrix(
        (data, (F.zerocopy_to_numpy(row), F.zerocopy_to_numpy(col))),
        shape=(n, n))
    g2 = DGLGraph()
    # some random node and edges
    g2.add_nodes(5)
    g2.add_edges([1, 2, 4], [2, 3, 0])
    g2.set_n_initializer(dgl.init.zero_initializer)
    g2.from_scipy_sparse_matrix(a)
    g2.ndata['h'] = g.ndata['h']

    # on dgl graph
    g.send(message_func=message_func)
    g.recv([0, 1, 3, 5],
           reduce_func=reduce_func,
           apply_node_func=apply_node_func)
    g.recv([0, 2, 4, 8],
           reduce_func=reduce_func,
           apply_node_func=apply_node_func)

    # nx
    g1.send(message_func=message_func)
    g1.recv([0, 1, 3, 5],
            reduce_func=reduce_func,
            apply_node_func=apply_node_func)
    g1.recv([0, 2, 4, 8],
            reduce_func=reduce_func,
            apply_node_func=apply_node_func)

    # sparse matrix
    g2.send(message_func=message_func)
    g2.recv([0, 1, 3, 5],
            reduce_func=reduce_func,
            apply_node_func=apply_node_func)
    g2.recv([0, 2, 4, 8],
            reduce_func=reduce_func,
            apply_node_func=apply_node_func)

    assert F.allclose(g.ndata['h'], g1.ndata['h'])
    assert F.allclose(g.ndata['h'], g2.ndata['h'])
Esempio n. 5
0
def test_recv_0deg_newfld():
    # test recv with 0deg nodes; the reducer also creates a new field
    g = DGLGraph()
    g.add_nodes(2)
    g.add_edge(0, 1)

    def _message(edges):
        return {'m': edges.src['h']}

    def _reduce(nodes):
        return {'h1': nodes.data['h'] + mx.nd.sum(nodes.mailbox['m'], 1)}

    def _apply(nodes):
        return {'h1': nodes.data['h1'] * 2}

    def _init2(shape, dtype, ctx, ids):
        return 2 + mx.nd.zeros(shape=shape, dtype=dtype, ctx=ctx)

    g.register_message_func(_message)
    g.register_reduce_func(_reduce)
    g.register_apply_node_func(_apply)
    # test#1: recv both 0deg and non-0deg nodes
    old = mx.nd.random.normal(shape=(2, 5))
    g.set_n_initializer(_init2, 'h1')
    g.ndata['h'] = old
    g.send((0, 1))
    g.recv([0, 1])
    new = g.ndata.pop('h1')
    # 0deg check: initialized with the func and got applied
    assert np.allclose(new[0].asnumpy(), np.full((5, ), 4))
    # non-0deg check
    assert np.allclose(new[1].asnumpy(), mx.nd.sum(old, 0).asnumpy() * 2)

    # test#2: recv only 0deg node
    old = mx.nd.random.normal(shape=(2, 5))
    g.ndata['h'] = old
    g.ndata['h1'] = mx.nd.full((2, 5), -1)  # this is necessary
    g.send((0, 1))
    g.recv(0)
    new = g.ndata.pop('h1')
    # 0deg check: fallback to apply
    assert np.allclose(new[0].asnumpy(), np.full((5, ), -2))
    # non-0deg check: not changed
    assert np.allclose(new[1].asnumpy(), np.full((5, ), -1))
Esempio n. 6
0
def test_recv_0deg():
    # test recv with 0deg nodes;
    g = DGLGraph()
    g.add_nodes(2)
    g.add_edge(0, 1)

    def _message(edges):
        return {'m': edges.src['h']}

    def _reduce(nodes):
        return {'h': nodes.data['h'] + nodes.mailbox['m'].sum(1)}

    def _apply(nodes):
        return {'h': nodes.data['h'] * 2}

    def _init2(shape, dtype, ctx, ids):
        return 2 + th.zeros(shape, dtype=dtype, device=ctx)

    g.register_message_func(_message)
    g.register_reduce_func(_reduce)
    g.register_apply_node_func(_apply)
    g.set_n_initializer(_init2, 'h')
    # test#1: recv both 0deg and non-0deg nodes
    old = th.randn((2, 5))
    g.ndata['h'] = old
    g.send((0, 1))
    g.recv([0, 1])
    new = g.ndata.pop('h')
    # 0deg check: initialized with the func and got applied
    assert U.allclose(new[0], th.full((5, ), 4))
    # non-0deg check
    assert U.allclose(new[1], th.sum(old, 0) * 2)

    # test#2: recv only 0deg node is equal to apply
    old = th.randn((2, 5))
    g.ndata['h'] = old
    g.send((0, 1))
    g.recv(0)
    new = g.ndata.pop('h')
    # 0deg check: equal to apply_nodes
    assert U.allclose(new[0], 2 * old[0])
    # non-0deg check: untouched
    assert U.allclose(new[1], old[1])
Esempio n. 7
0
def test_multi_recv_0deg():
    # test recv with 0deg nodes;
    g = DGLGraph()
    def _message(edges):
        return {'m' : edges.src['h']}
    def _reduce(nodes):
        return {'h' : nodes.data['h'] + nodes.mailbox['m'].sum(1)}
    def _apply(nodes):
        return {'h' : nodes.data['h'] * 2}
    def _init2(shape, dtype, ctx, ids):
        return 2 + th.zeros(shape, dtype=dtype, device=ctx)
    g.register_message_func(_message)
    g.register_reduce_func(_reduce)
    g.register_apply_node_func(_apply)
    g.set_n_initializer(_init2)
    g.add_nodes(2)
    g.add_edge(0, 1)
    # recv both 0deg and non-0deg nodes
    old = th.randn((2, 5))
    g.ndata['h'] = old
    g.send((0, 1))
    g.recv([0, 1])
    new = g.ndata['h']
    # 0deg check: initialized with the func and got applied
    assert U.allclose(new[0], th.full((5,), 4))
    # non-0deg check
    assert U.allclose(new[1], th.sum(old, 0) * 2)

    # recv again on zero degree node
    g.recv([0])
    assert U.allclose(g.nodes[0].data['h'], th.full((5,), 8))

    # recv again on node with no incoming message
    g.recv([1])
    assert U.allclose(g.nodes[1].data['h'], th.sum(old, 0) * 4)
Esempio n. 8
0
def test_dynamic_addition():
    N = 3
    D = 1

    g = DGLGraph()

    def _init(shape, dtype, ctx, ids):
        return F.copy_to(F.astype(F.randn(shape), dtype), ctx)

    g.set_n_initializer(_init)
    g.set_e_initializer(_init)

    def _message(edges):
        return {
            'm':
            edges.src['h1'] + edges.dst['h2'] + edges.data['h1'] +
            edges.data['h2']
        }

    def _reduce(nodes):
        return {'h': F.sum(nodes.mailbox['m'], 1)}

    def _apply(nodes):
        return {'h': nodes.data['h']}

    g.register_message_func(_message)
    g.register_reduce_func(_reduce)
    g.register_apply_node_func(_apply)
    g.set_n_initializer(dgl.init.zero_initializer)
    g.set_e_initializer(dgl.init.zero_initializer)

    # add nodes and edges
    g.add_nodes(N)
    g.ndata.update({'h1': F.randn((N, D)), 'h2': F.randn((N, D))})
    g.add_nodes(3)
    g.add_edge(0, 1)
    g.add_edge(1, 0)
    g.edata.update({'h1': F.randn((2, D)), 'h2': F.randn((2, D))})
    g.send()
    expected = F.copy_to(F.ones((g.number_of_edges(), ), dtype=F.int64),
                         F.cpu())
    assert F.array_equal(g._get_msg_index().tousertensor(), expected)

    # add more edges
    g.add_edges([0, 2], [2, 0], {'h1': F.randn((2, D))})
    g.send(([0, 2], [2, 0]))
    g.recv(0)

    g.add_edge(1, 2)
    g.edges[4].data['h1'] = F.randn((1, D))
    g.send((1, 2))
    g.recv([1, 2])

    h = g.ndata.pop('h')

    # a complete round of send and recv
    g.send()
    g.recv()
    assert F.allclose(h, g.ndata['h'])
Esempio n. 9
0
def test_send_multigraph():
    g = DGLGraph(multigraph=True)
    g.add_nodes(3)
    g.add_edge(0, 1)
    g.add_edge(0, 1)
    g.add_edge(0, 1)
    g.add_edge(2, 1)

    def _message_a(edges):
        return {'a': edges.data['a']}

    def _message_b(edges):
        return {'a': edges.data['a'] * 3}

    def _reduce(nodes):
        return {'a': nodes.mailbox['a'].max(1)[0]}

    def answer(*args):
        return th.stack(args, 0).max(0)[0]

    # send by eid
    old_repr = th.randn(4, 5)
    g.ndata['a'] = th.zeros(3, 5)
    g.edata['a'] = old_repr
    g.send([0, 2], message_func=_message_a)
    g.recv(1, _reduce)
    new_repr = g.ndata['a']
    assert U.allclose(new_repr[1], answer(old_repr[0], old_repr[2]))

    g.ndata['a'] = th.zeros(3, 5)
    g.edata['a'] = old_repr
    g.send([0, 2, 3], message_func=_message_a)
    g.recv(1, _reduce)
    new_repr = g.ndata['a']
    assert U.allclose(new_repr[1], answer(old_repr[0], old_repr[2],
                                          old_repr[3]))

    # send on multigraph
    g.ndata['a'] = th.zeros(3, 5)
    g.edata['a'] = old_repr
    g.send(([0, 2], [1, 1]), _message_a)
    g.recv(1, _reduce)
    new_repr = g.ndata['a']
    assert U.allclose(new_repr[1], old_repr.max(0)[0])

    # consecutive send and send_on
    g.ndata['a'] = th.zeros(3, 5)
    g.edata['a'] = old_repr
    g.send((2, 1), _message_a)
    g.send([0, 1], message_func=_message_b)
    g.recv(1, _reduce)
    new_repr = g.ndata['a']
    assert U.allclose(new_repr[1],
                      answer(old_repr[0] * 3, old_repr[1] * 3, old_repr[3]))

    # consecutive send_on
    g.ndata['a'] = th.zeros(3, 5)
    g.edata['a'] = old_repr
    g.send(0, message_func=_message_a)
    g.send(1, message_func=_message_b)
    g.recv(1, _reduce)
    new_repr = g.ndata['a']
    assert U.allclose(new_repr[1], answer(old_repr[0], old_repr[1] * 3))

    # send_and_recv_on
    g.ndata['a'] = th.zeros(3, 5)
    g.edata['a'] = old_repr
    g.send_and_recv([0, 2, 3], message_func=_message_a, reduce_func=_reduce)
    new_repr = g.ndata['a']
    assert U.allclose(new_repr[1], answer(old_repr[0], old_repr[2],
                                          old_repr[3]))
    assert U.allclose(new_repr[[0, 2]], th.zeros(2, 5))