def test_dgmc_include_gt():
    model = DGMC(psi_1, psi_2, num_steps=1)

    S_idx = torch.tensor([[[0, 1], [1, 2]], [[1, 2], [0, 1]]])
    s_mask = torch.tensor([[True, False], [True, True]])
    y = torch.tensor([[0, 1], [0, 0]])

    S_idx = model.__include_gt__(S_idx, s_mask, y)
    assert S_idx.tolist() == [[[0, 1], [1, 2]], [[1, 0], [0, 1]]]
def test_dgmc_repr():
    model = DGMC(psi_1, psi_2, num_steps=1)
    assert model.__repr__() == (
        'DGMC(\n'
        '    psi_1=GIN(32, 16, num_layers=2, batch_norm=False, cat=True, '
        'lin=True),\n'
        '    psi_2=GIN(8, 8, num_layers=2, batch_norm=False, cat=True, '
        'lin=True),\n'
        '    num_steps=1, k=-1\n)')
    model.reset_parameters()
def test_dgmc_on_multiple_graphs():
    set_seed()
    model = DGMC(psi_1, psi_2, num_steps=1)

    batch = Batch.from_data_list([data, data])
    x, e, b = batch.x, batch.edge_index, batch.batch

    set_seed()
    S1_0, S1_L = model(x, e, None, b, x, e, None, b)
    assert S1_0.size() == (batch.num_nodes, data.num_nodes)
    assert S1_L.size() == (batch.num_nodes, data.num_nodes)

    set_seed()
    model.k = data.num_nodes  # Test a sparse "dense" variant.
    S2_0, S2_L = model(x, e, None, b, x, e, None, b)

    assert torch.allclose(S1_0, S2_0.to_dense())
    assert torch.allclose(S1_L, S2_L.to_dense())
def test_dgmc_on_single_graphs():
    set_seed()
    model = DGMC(psi_1, psi_2, num_steps=1)
    x, e = data.x, data.edge_index
    y = torch.arange(data.num_nodes)
    y = torch.stack([y, y], dim=0)

    set_seed()
    S1_0, S1_L = model(x, e, None, None, x, e, None, None)
    loss1 = model.loss(S1_0, y)
    loss1.backward()
    acc1 = model.acc(S1_0, y)
    hits1_1 = model.hits_at_k(1, S1_0, y)
    hits1_10 = model.hits_at_k(10, S1_0, y)
    hits1_all = model.hits_at_k(data.num_nodes, S1_0, y)

    set_seed()
    model.k = data.num_nodes  # Test a sparse "dense" variant.
    y = torch.arange(data.num_nodes)
    y = torch.stack([y, y], dim=0)
    S2_0, S2_L = model(x, e, None, None, x, e, None, None, y)
    loss2 = model.loss(S2_0, y)
    loss2.backward()
    acc2 = model.acc(S2_0, y)
    hits2_1 = model.hits_at_k(1, S2_0, y)
    hits2_10 = model.hits_at_k(10, S2_0, y)
    hits2_all = model.hits_at_k(data.num_nodes, S2_0, y)

    assert S1_0.size() == (data.num_nodes, data.num_nodes)
    assert S1_L.size() == (data.num_nodes, data.num_nodes)
    assert torch.allclose(S1_0, S2_0.to_dense())
    assert torch.allclose(S1_L, S2_L.to_dense())
    assert torch.allclose(loss1, loss2)
    assert acc1 == acc2 == hits1_1 == hits2_1
    assert hits1_1 <= hits1_10 == hits2_10 <= hits1_all
    assert hits1_all == hits2_all == 1.0
                          follow_batch=['x_s', 'x_t'])

device = 'cuda' if torch.cuda.is_available() else 'cpu'
psi_1 = SplineCNN(dataset.num_node_features,
                  args.dim,
                  dataset.num_edge_features,
                  args.num_layers,
                  cat=False,
                  dropout=0.5)
psi_2 = SplineCNN(args.rnd_dim,
                  args.rnd_dim,
                  dataset.num_edge_features,
                  args.num_layers,
                  cat=True,
                  dropout=0.0)
model = DGMC(psi_1, psi_2, num_steps=args.num_steps).to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr)


def generate_y(y_col):
    y_row = torch.arange(y_col.size(0), device=device)
    return torch.stack([y_row, y_col], dim=0)


def train():
    model.train()

    total_loss = 0
    for data in train_loader:
        optimizer.zero_grad()
        data = data.to(device)
Esempio n. 6
0
psi_1 = RelCNN(data.x1.size(-1),
               args.dim,
               args.num_layers,
               batch_norm=False,
               cat=True,
               lin=True,
               dropout=0.5)
psi_2 = RelCNN(args.rnd_dim,
               args.rnd_dim,
               args.num_layers,
               batch_norm=False,
               cat=True,
               lin=True,
               dropout=0.0)
model = DGMC(psi_1, psi_2, num_steps=None, k=args.k).to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)


def train():
    model.train()
    optimizer.zero_grad()

    _, S_L = model(data.x1, data.edge_index1, None, None, data.x2,
                   data.edge_index2, None, None, data.train_y)

    loss = model.loss(S_L, data.train_y)
    loss.backward()
    optimizer.step()
    return loss
Esempio n. 7
0
        if category in ['car', 'motorbike'] else pre_filter1)
    pretrain_datasets += [ValidPairDataset(dataset, dataset, sample=True)]
pretrain_dataset = torch.utils.data.ConcatDataset(pretrain_datasets)
pretrain_loader = DataLoader(pretrain_dataset, args.batch_size, shuffle=True,
                             follow_batch=['x_s', 'x_t'])

path = osp.join('..', 'data', 'WILLOW')
datasets = [WILLOW(path, cat, transform) for cat in WILLOW.categories]

device = 'cuda' if torch.cuda.is_available() else 'cpu'
psi_1 = SplineCNN(dataset.num_node_features, args.dim,
                  dataset.num_edge_features, args.num_layers, cat=False,
                  dropout=0.5)
psi_2 = SplineCNN(args.rnd_dim, args.rnd_dim, dataset.num_edge_features,
                  args.num_layers, cat=True, dropout=0.0)
model = DGMC(psi_1, psi_2, num_steps=args.num_steps).to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr)


def generate_voc_y(y_col):
    y_row = torch.arange(y_col.size(0), device=device)
    return torch.stack([y_row, y_col], dim=0)


def pretrain():
    model.train()

    total_loss = 0
    for data in pretrain_loader:
        optimizer.zero_grad()
        data = data.to(device)