Esempio n. 1
0
    def test_metrics_multilabel(self):
        n_classes = 2
        classes_labels = ["t1", "t2"]
        y_pred = torch.tensor([[[1, 0], [1, 1]], [[0, 1], [0, 0]]],
                              dtype=torch.float).permute(0, 2, 1)

        y_true = torch.tensor([[[1, 1], [1, 0]], [[1, 1], [0, 0]]],
                              dtype=torch.long).permute(0, 2, 1)

        params = {"type": "precision", "average": "micro", "multilabel": True}

        precision = Metric.from_params(Params(params),
                                       num_classes=n_classes,
                                       classes_labels=classes_labels)
        precision(y_true, y_pred)
        val = precision.get_metric_value()
        assert val == 3 / 4

        params = {
            "type": "precision",
            "average": "micro",
            "batch_average": True,
            "multilabel": True,
        }

        precision = Metric.from_params(Params(params),
                                       num_classes=n_classes,
                                       classes_labels=classes_labels)

        precision(y_true, y_pred)
        val = precision.get_metric_value()

        assert val == (2 / 3 + 1 / 1) / 2
Esempio n. 2
0
    def test_patches(self):
        img = np.random.random((64, 64, 3))
        mask = np.random.randint(0, 20, (63, 63))

        patch_shape = 32
        param = {"type": "sample_to_patches", "patch_shape": patch_shape}
        sample_to_patches = Transform.from_params(Params(param))
        res = sample_to_patches(image=img, mask=mask)
        assert all(
            [p.shape[:2] == (patch_shape, patch_shape) for p in res["image"]])
        assert all(
            [p.shape[:2] == (patch_shape, patch_shape) for p in res["mask"]])

        patch_shape = (32, 2)
        param = {"type": "sample_to_patches", "patch_shape": patch_shape}
        sample_to_patches = Transform.from_params(Params(param))
        res = sample_to_patches(image=img, mask=mask)
        assert all([p.shape[:2] == patch_shape for p in res["image"]])
        assert all([p.shape[:2] == patch_shape for p in res["mask"]])

        with pytest.raises(ValueError):
            sample_to_patches(image=np.ones((2, 32, 32, 3)))

        with pytest.raises(IndexError):
            sample_to_patches(image=np.ones((2, )))

        with pytest.raises(ValueError):
            patch_shape = (1, 1)
            param = {"type": "sample_to_patches", "patch_shape": patch_shape}
            sample_to_patches = Transform.from_params(Params(param))
            res = sample_to_patches(image=img, mask=mask)
Esempio n. 3
0
    def test_warmup_lr(self):
        named_parameters = [("x", torch.nn.Parameter())]
        lr = 1
        opt = Optimizer.from_params(Params({
            "type": "sgd",
            "lr": lr
        }),
                                    model_params=named_parameters)

        warmup_start = 0.1
        warmup_end = lr
        warmup_duration = 10
        gamma_exp = 0.95
        sched_params = {
            "type": "warmup",
            "scheduler": {
                "type": "exponential",
                "gamma": gamma_exp
            },
            "warmup_start_value": warmup_start,
            "warmup_end_value": warmup_end,
            "warmup_duration": warmup_duration,
        }
        sched = Scheduler.from_params(Params(sched_params), optimizer=opt)
        assert np.allclose(sched.get_last_lr()[0], warmup_start)
        for _ in range(warmup_duration):
            opt.step()
            sched.step()
        assert np.allclose(sched.get_last_lr()[0], warmup_end)

        for i in range(50):
            opt.step()
            sched.step()
            assert np.allclose(sched.get_last_lr()[0],
                               warmup_end * gamma_exp**(i + 1))
Esempio n. 4
0
    def test_metrics_multiclass(self):
        n_classes = 3
        classes_labels = ["b", "t1", "t2"]

        logits = (torch.tensor([
            [[[10, 1, 1], [10, 1, 1], [1, 1, 10], [1, 1, 10]]],
            [[[1, 10, 1], [1, 1, 10], [1, 1, 10], [1, 10, 1]]],
        ]).to(torch.float).permute(0, 3, 1, 2))

        y_true = torch.tensor([[[0, 1, 2, 2]], [[1, 2, 2, 0]]])

        params = {"type": "precision", "average": "micro"}

        precision = Metric.from_params(Params(params),
                                       num_classes=n_classes,
                                       classes_labels=classes_labels)
        precision.get_metric_value()
        precision(y_true, logits)
        val = precision.get_metric_value()
        assert val == 5 / 6

        params = {
            "type": "precision",
            "average": "micro",
            "batch_average": True,
        }

        precision = Metric.from_params(Params(params),
                                       num_classes=n_classes,
                                       classes_labels=classes_labels)

        precision(y_true, logits)
        val = precision.get_metric_value()

        assert val == (2 / 2 + 3 / 4) / 2
Esempio n. 5
0
    def test_lr_concat(self):
        named_parameters = [("x", torch.nn.Parameter())]
        lr = 1
        opt = Optimizer.from_params(Params({
            "type": "sgd",
            "lr": lr
        }),
                                    model_params=named_parameters)

        gamma_exp = 0.95
        gamma_plateau = 0.01
        patience = 2
        sched_params = {
            "type":
            "concat",
            "schedulers": [
                {
                    "type": "exponential",
                    "gamma": gamma_exp
                },
                {
                    "type": "reduce_on_plateau",
                    "mode": "max",
                    "factor": gamma_plateau,
                    "patience": patience,
                    "min_lr": 1e-3,
                },
            ],
            "durations": [
                10,
            ],
        }
        sched = Scheduler.from_params(Params(sched_params), optimizer=opt)

        assert np.allclose(sched.get_last_lr()[0], lr)
        for i in range(10):
            opt.step()
            sched.step(0.1)
            assert np.allclose(sched.get_last_lr()[0], lr * gamma_exp**(i + 1))
        start_lr = lr * gamma_exp**10
        sched.step(0.5)
        assert np.allclose(sched.get_last_lr()[0], start_lr)
        sched.step(0.4)
        assert np.allclose(sched.get_last_lr()[0], start_lr)
        sched.step(0.3)
        assert np.allclose(sched.get_last_lr()[0], start_lr)
        sched.step(0.3)
        assert np.allclose(sched.get_last_lr()[0], start_lr * gamma_plateau)

        # test min_lr
        sched.step(0.3)
        assert np.allclose(sched.get_last_lr()[0], start_lr * gamma_plateau)
        sched.step(0.4)
        assert np.allclose(sched.get_last_lr()[0], start_lr * gamma_plateau)
        sched.step(0.3)
        assert np.allclose(sched.get_last_lr()[0],
                           max(1e-3, start_lr * gamma_plateau**2))
Esempio n. 6
0
 def test_blur(self):
     blur = Transform.from_params(Params({"type": "blur", "p": 1}))
     img = np.random.random((128, 128, 3))
     res = blur(image=img)
     assert img.mean() != res["image"].mean()
     blur = Transform.from_params(Params({"type": "blur", "p": 0}))
     img = np.random.random((128, 128, 3))
     res = blur(image=img)
     assert img.mean() == res["image"].mean()
Esempio n. 7
0
 def test_read_jsonnet(self):
     with pytest.raises(RuntimeError):
         Params.from_file(self.FIXTURES_ROOT / "configs" /
                          "resnet50_unet_bad.jsonnet")
     params = Params.from_file(self.FIXTURES_ROOT / "configs" /
                               "resnet50_unet.jsonnet")
     assert len(params) == 3
     assert params["encoder"]["type"] == "resnet50"
     assert params["decoder"]["type"] == "unet"
     assert params["decoder"]["decoder_channels"] == [512, 256, 128, 64, 32]
    def test_normalizations_with_resnet(self):
        params = Params({
            "type": "resnet50",
            "normalization": {
                "type": "identity"
            }
        })
        encoder = Encoder.from_params(params)
        assert isinstance(encoder.layer4[0].bn1, Identity)
        x = torch.zeros((2, 3, 4, 4)).normal_()
        encoder.forward(x)

        params = Params({
            "type": "resnet50",
            "normalization": {
                "type": "batch_norm_2d"
            }
        })
        encoder = Encoder.from_params(params)
        assert isinstance(encoder.layer4[0].bn1, BatchNorm2d)
        encoder.forward(x)

        params = Params({
            "type": "resnet50",
            "normalization": {
                "type": "batch_renorm_2d"
            }
        })
        encoder = Encoder.from_params(params)
        assert isinstance(encoder.layer4[0].bn1, BatchRenorm2d)
        encoder.forward(x)

        params = Params({
            "type": "resnet50",
            "normalization": {
                "type": "group_norm"
            }
        })
        with pytest.raises(ConfigurationError):
            Encoder.from_params(params)

        params = Params({
            "type": "resnet50",
            "normalization": {
                "type": "group_norm",
                "num_groups": 8
            },
        })
        encoder = Encoder.from_params(params)
        assert isinstance(encoder.layer4[0].bn1, GroupNorm)
        encoder.forward(x)
Esempio n. 9
0
    def test_compose(self):
        param = {
            "type":
            "compose",
            "transforms": [
                "blur",
                {
                    "type": "horizontal_flip",
                    "always_apply": True
                },
                {
                    "type": "random_crop",
                    "height": 32,
                    "width": 32
                },
            ],
            "additional_targets": {
                "image2": "image",
                "mask1": "mask",
                "label": "mask"
            },
        }

        compose = Transform.from_params(Params(param))
        img = np.random.random((128, 128, 3))
        mask = np.random.randint(0, 20, (128, 128))
        res = compose(image2=img, image=img, mask1=mask, label=mask)

        assert np.allclose(res["image"], res["image2"])
        assert np.allclose(res["mask1"], res["label"])
        assert res["image"].shape[:2] == (32, 32)
        assert res["mask1"].shape[:2] == (32, 32)
Esempio n. 10
0
    def test_union_str_list_str(self):
        class A(FromParams):
            def __init__(self, x: List[Tuple[Union[str, List[str]],
                                             Dict[str, Any]]]):
                self.x = x

        a = A.from_params(Params({"x": [["test", {}]]}))
Esempio n. 11
0
    def test_make_param_groups(self):
        model = Model.from_params(
            Params({
                "encoder": {
                    "type": "resnet50"
                },
                "decoder": {
                    "type": "unet",
                    "decoder_channels": [512, 256, 128, 64, 32],
                },
                "num_classes": 4,
            }))

        named_parameters = [x for x in model.named_parameters()]
        alpha_decoder = 0.01
        alpha_logits = 0.1
        alpha_encoder = 0.0001

        params = {
            "param_groups": [
                {
                    "regexes": "encoder",
                    "params": {
                        "alpha": alpha_encoder
                    }
                },
                {
                    "regexes":
                    ["decoder.logits.*.weight", "decoder.logits.*.bias"],
                    "params": {
                        "alpha": alpha_logits
                    },
                },
            ],
            "alpha":
            alpha_decoder,
        }

        reg = Regularizer.from_params(Params(params),
                                      model_params=named_parameters)

        assert reg.param_groups[0]["alpha"] == alpha_encoder
        assert len(reg.param_groups[0]["params"]) == 161
        assert reg.param_groups[2]["alpha"] == alpha_decoder
        assert len(reg.param_groups[2]["params"]) == 20
        assert reg.param_groups[1]["alpha"] == alpha_logits
        assert len(reg.param_groups[1]["params"]) == 2
Esempio n. 12
0
 def test_assert_empty(self):
     config_dict = {"test": "hello"}
     params = Params(config_dict)
     with pytest.raises(ConfigurationError):
         params.assert_empty("dummy")
     assert params.pop("test") == "hello"
     params.assert_empty("dummy")
Esempio n. 13
0
    def test_trainer(self):

        blocks = 2
        num_channels = 32
        params = Params({
            "color_labels": {
                "type":
                "txt",
                "label_text_file":
                self.FIXTURES_ROOT / "dataset" / "multiclass" / "classes.txt",
            },
            "train_dataset": {
                "type": "image_csv",
                "csv_filename":
                self.FIXTURES_ROOT / "dataset" / "multiclass" / "train.csv",
                "base_dir": self.FIXTURES_ROOT / "dataset" / "multiclass",
            },
            "model": {
                "encoder": "resnet50",
                "decoder": {
                    "decoder_channels": [512, 256, 128, 64, 32]
                }
                # "loss": {"type": "dice"},
            },
            "metrics": [
                "iou",
                ("iou_class", {
                    "type": "iou",
                    "average": None
                }),
                "precision",
            ],
            "val_dataset": {
                "type": "image_csv",
                "csv_filename":
                self.FIXTURES_ROOT / "dataset" / "multiclass" / "test.csv",
                "base_dir": self.FIXTURES_ROOT / "dataset" / "multiclass",
            },
            "lr_scheduler": {
                "type": "exponential",
                "gamma": 0.95
            },
            "early_stopping": {
                "patience": 20
            },
            "model_out_dir":
            str(self.TEMPORARY_DIR / "model"),
            "num_epochs":
            2,
            "evaluate_every_epoch":
            1,
        })

        trainer = Trainer.from_params(params)
        trainer.train()
Esempio n. 14
0
    def test_build_optimizers(self):
        model = Model.from_params(
            Params(
                {
                    "encoder": {},
                    "decoder": {"decoder_channels": [512, 256, 128, 64, 32],},
                    "num_classes": 4,
                }
            )
        )

        named_parameters = [x for x in model.named_parameters()]

        optimizers = Optimizer.get_available()

        for optimizer in optimizers:
            lr = 10
            params = {"type": optimizer, "lr": lr}
            opt = Optimizer.from_params(Params(params), model_params=named_parameters)
            assert opt.state_dict()["param_groups"][0]["lr"] == lr
Esempio n. 15
0
    def test_build_regularizers(self):
        model = Model.from_params(
            Params({
                "encoder": {},
                "decoder": {
                    "decoder_channels": [512, 256, 128, 64, 32],
                },
                "num_classes": 4,
            }))

        named_parameters = [x for x in model.named_parameters()]

        regularizers = Regularizer.get_available()

        for regularizer in regularizers:
            alpha = 10
            params = {"type": regularizer, "alpha": alpha}
            reg = Regularizer.from_params(Params(params),
                                          model_params=named_parameters)
            assert reg.param_groups[0]["alpha"] == alpha
Esempio n. 16
0
    def test_basic_from_params(self):
        config_dict = {}
        transform = Transform.from_params(Params(config_dict))
        assert transform.apply(1) == 7

        config_dict["x"] = 4
        with pytest.raises(ConfigurationError):
            Transform.from_params(Params(config_dict))

        config_dict["type"] = "mult_by_x"
        transform = Transform.from_params(Params(config_dict))
        assert transform.apply(4) == 16

        config_dict["type"] = "mult_by_x_add_y"
        config_dict["x"] = 4
        with pytest.raises(ConfigurationError):
            Transform.from_params(Params(config_dict))
        config_dict["type"] = "mult_by_x_add_y"
        config_dict["x"] = 4
        config_dict["y"] = 2
        transform = Transform.from_params(Params(config_dict))
        assert transform.apply(4) == 18

        config_dict["type"] = "mult_by_x_add_y"
        config_dict["x"] = 4
        config_dict["y"] = "test"
        with pytest.raises(TypeError):
            Transform.from_params(Params(config_dict))
Esempio n. 17
0
    def test_encoders_from_params(self):
        resnet_encoders = ["resnet50", "resnet34", "resnet18"]
        available_encoders = Encoder.get_available()
        for encoder in resnet_encoders:
            assert encoder in available_encoders
        params = Params({"type": "resnet50", "blocks": 3})
        encoder = Encoder.from_params(params)
        assert encoder.blocks == 3
        assert len(encoder.output_dims) == 5
        assert encoder.layer4[-1].conv1.in_channels == 2048
        x = torch.zeros((2, 3, 128, 128)).normal_()
        encoder.forward(x)

        params = Params({"type": "resnet34", "blocks": 2})
        encoder = Encoder.from_params(params)
        assert encoder.blocks == 2
        assert len(encoder.output_dims) == 4
        assert len(encoder.layer4) == 3
        assert encoder.layer4[-1].conv1.in_channels == 512
        encoder.forward(x)

        params = Params({"type": "resnet18"})
        encoder = Encoder.from_params(params)
        assert len(encoder.layer4) == 2
        assert encoder.layer4[-1].conv1.in_channels == 512
        encoder.forward(x)

        params = Params({
            "type": "resnet50",
            "blocks": 3,
            "pretrained": False,
            "replace_stride_with_dilation": [False, True, True],
            "normalization": {
                "type": "identity"
            },
        })
        encoder = Encoder.from_params(params)
        assert isinstance(encoder.layer4[0].bn1, torch.nn.Identity)
        assert encoder.layer4[1].conv2.dilation == (4, 4)
        encoder.forward(x)
Esempio n. 18
0
    def test_make_param_groups(self):
        model = Model.from_params(
            Params(
                {
                    "encoder": {"type": "resnet50"},
                    "decoder": {
                        "type": "unet",
                        "decoder_channels": [512, 256, 128, 64, 32],
                    },
                    "num_classes": 4,
                }
            )
        )

        named_parameters = [x for x in model.named_parameters()]
        lr_decoder = 0.01
        lr_logits = 0.1
        lr_encoder = 0.0001

        params = {
            "param_groups": {
                "encoder": {"params": {"lr": lr_encoder}},
                "decoder_logits": {
                    "regexes": ["decoder.logits.*.weight", "decoder.logits.*.bias"],
                    "params": {"lr": lr_logits},
                },
            },
            "lr": lr_decoder,
        }

        opt = Optimizer.from_params(Params(params), model_params=named_parameters)

        assert opt.state_dict()["param_groups"][0]["lr"] == lr_encoder
        assert len(opt.state_dict()["param_groups"][0]["params"]) == 161
        assert opt.state_dict()["param_groups"][2]["lr"] == lr_decoder
        assert len(opt.state_dict()["param_groups"][2]["params"]) == 20
        assert opt.state_dict()["param_groups"][1]["lr"] == lr_logits
        assert len(opt.state_dict()["param_groups"][1]["params"]) == 2
Esempio n. 19
0
    def test_encoders_from_params(self):
        mobilenet_encoders = ["mobilenetv2"]
        available_encoders = Encoder.get_available()
        for encoder in mobilenet_encoders:
            assert encoder in available_encoders
        params = Params({"type": "mobilenetv2", "blocks": 3})
        encoder = Encoder.from_params(params)
        assert encoder.blocks == 3
        assert len(encoder.output_dims) == 5
        assert encoder.features[-1][0].out_channels == 1280
        x = torch.zeros((2, 3, 256, 256)).normal_()
        encoder.forward(x)

        params = Params({
            "type": "mobilenetv2",
            "blocks": 2,
            "pretrained": False
        })
        encoder = Encoder.from_params(params)
        assert encoder.blocks == 2
        assert len(encoder.output_dims) == 4
        assert encoder.features[-1][0].out_channels == 1280
        encoder.forward(x)
Esempio n. 20
0
    def test_simple_nesting(self):
        config_dict = {
            "type": "from_single_transform",
            "data_path": 10,
            "transform": {
                "type": "mult_by_x",
                "x": 4
            },
        }

        dataset = Dataset.from_params(Params(config_dict))
        assert dataset.data_path == 10
        assert len(dataset.transforms) == 1
        assert dataset.transforms[0].x == 4
Esempio n. 21
0
    def test_reduce_lr_on_plateau(self):
        named_parameters = [("x", torch.nn.Parameter())]
        lr = 1
        opt = Optimizer.from_params(Params({
            "type": "sgd",
            "lr": lr
        }),
                                    model_params=named_parameters)

        gamma = 0.01
        patience = 2
        sched_params = {
            "type": "reduce_on_plateau",
            "mode": "max",
            "factor": gamma,
            "patience": patience,
            "min_lr": 1e-3,
        }
        sched = Scheduler.from_params(Params(sched_params), optimizer=opt)
        assert np.allclose(sched.get_last_lr()[0], lr)
        sched.step(0.5)
        assert np.allclose(sched.get_last_lr()[0], lr)
        sched.step(0.4)
        assert np.allclose(sched.get_last_lr()[0], lr)
        sched.step(0.3)
        assert np.allclose(sched.get_last_lr()[0], lr)
        sched.step(0.3)
        assert np.allclose(sched.get_last_lr()[0], lr * gamma)

        # test min_lr
        sched.step(0.3)
        assert np.allclose(sched.get_last_lr()[0], lr * gamma)
        sched.step(0.4)
        assert np.allclose(sched.get_last_lr()[0], lr * gamma)
        sched.step(0.3)
        assert np.allclose(sched.get_last_lr()[0], max(1e-3, lr * gamma**2))
Esempio n. 22
0
    def test_encoders_from_params(self):

        blocks = 2
        num_channels = 32
        n_classes = 2
        params = Params({
            "encoder": {
                "type": "resnet50",
                "blocks": blocks,
                "pretrained": False,
                "replace_stride_with_dilation": [False, True, True],
                "normalization": {
                    "type": "identity"
                },
            },
            "decoder": {
                "type": "pan",
                "decoder_channels_size": num_channels,
                "normalization": {
                    "type": "batch_renorm_2d"
                },
                "activation": {
                    "type": "leaky_relu",
                    "inplace": True
                },
                "gau_activation": {
                    "type": "swish"
                },
                "upscale_mode": "nearest",
            },
            "loss": {
                "type": "dice"
            },
            "num_classes": n_classes,
        })
        x = torch.zeros((2, 3, 128, 128)).normal_()
        y = (torch.zeros(
            (2, n_classes, 128, 128)).normal_() > 0.5).to(torch.float)
        model = Model.from_params(params)
        res = model.forward(x, y)
        assert res["loss"] > 0
        assert res["logits"].shape[1] == n_classes
        assert isinstance(model.encoder, ResNetEncoder)
        assert isinstance(model.decoder, PanDecoder)
Esempio n. 23
0
    def test_lazy(self):
        test_string = "this is a test"
        extra_string = "extra string"

        class ConstructedObject(FromParams):
            def __init__(self, string: str, extra: str):
                self.string = string
                self.extra = extra

        class Testing(FromParams):
            def __init__(self, lazy_object: Lazy[ConstructedObject]):
                first_time = lazy_object.construct(extra=extra_string)
                second_time = lazy_object.construct(extra=extra_string)
                assert first_time.string == test_string
                assert first_time.extra == extra_string
                assert second_time.string == test_string
                assert second_time.extra == extra_string

        Testing.from_params(Params({"lazy_object": {"string": test_string}}))
Esempio n. 24
0
    def test_list_with_strings(self):
        params = {
            "type":
            "from_transforms_list",
            "data_path":
            "./",
            "transforms": [
                "mult_by_2_add_5",
                {
                    "type": "mult_by_x",
                    "x": 5
                },
                "mult_by_2",
            ],
        }

        dataset = Dataset.from_params(Params(params))
        assert len(dataset.transforms) == 3
        assert isinstance(dataset.transforms[0], MultiplyByXAddY)
        assert dataset.transforms[0].x == 2 and dataset.transforms[0].y == 5
        assert isinstance(dataset.transforms[1], MultiplyByX)
        assert dataset.transforms[1].x == 5
        assert isinstance(dataset.transforms[2], MultiplyByX)
        assert dataset.transforms[2].x == 2
Esempio n. 25
0
    def test_none_default_args(self):
        params = {"type": "hardtanh", "min_val": "a"}

        with pytest.raises(TypeError):
            Activation.from_params(Params(params))
Esempio n. 26
0
    def test_complex_nesting(self):
        base_config_dict = {
            "data_path": "./",
            "transforms": {
                "t1": {
                    "type": "mult_by_x",
                    "x": 4
                },
                "t2": {
                    "type": "mult_by_2_add_5"
                },
            },
        }

        config_dict = deepcopy(base_config_dict)
        dataset = Dataset.from_params(Params(config_dict))

        assert dataset.data_path == "./"
        assert len(dataset.transforms) == 2
        assert dataset.transforms["t2"].y == 5

        # We now test with a list of transforms

        # Default dataset expects to be  mapping
        with pytest.raises(TypeError):
            config_dict = deepcopy(base_config_dict)
            config_dict["transforms"] = list(
                config_dict["transforms"].values())
            Dataset.from_params(Params(config_dict))

        config_dict = deepcopy(base_config_dict)
        config_dict["transforms"] = list(config_dict["transforms"].values())
        config_dict["type"] = "from_transforms_list"
        dataset = Dataset.from_params(Params(config_dict))

        assert dataset.data_path == "./"
        assert len(dataset.transforms) == 2
        assert dataset.transforms[1].y == 5

        with pytest.raises(TypeError):
            config_dict = deepcopy(base_config_dict)
            config_dict["type"] = "from_transforms_list"
            Dataset.from_params(Params(config_dict))

        # With tuples
        # Default dataset expects to be  mapping
        with pytest.raises(TypeError):
            config_dict = deepcopy(base_config_dict)
            config_dict["transforms"] = tuple(
                config_dict["transforms"].values())
            Dataset.from_params(Params(config_dict))

        config_dict = deepcopy(base_config_dict)
        config_dict["transforms"] = tuple(config_dict["transforms"].values())
        config_dict["type"] = "from_transforms_tuple"
        dataset = Dataset.from_params(Params(config_dict))

        assert dataset.data_path == "./"
        assert len(dataset.transforms) == 2
        assert dataset.transforms[1].y == 5

        with pytest.raises(TypeError):
            config_dict = deepcopy(base_config_dict)
            config_dict["type"] = "from_transforms_tuple"
            Dataset.from_params(Params(config_dict))

        # With set
        # Default dataset expects to be  mapping
        with pytest.raises(TypeError):
            config_dict = deepcopy(base_config_dict)
            config_dict["transforms"] = set(config_dict["transforms"].values())
            Dataset.from_params(Params(config_dict))

        config_dict = deepcopy(base_config_dict)
        config_dict["type"] = "from_set_param"
        config_dict["transform"] = list(config_dict["transforms"].values())[0]
        del config_dict["transforms"]
        config_dict["set_arg"] = [{"x": 1}, {"x": 2}]
        dataset = Dataset.from_params(Params(config_dict))

        assert dataset.data_path == "./"
        assert len(dataset.transforms) == 1
        assert dataset.transforms[0].x == 4
        assert len(dataset.set_arg) == 2

        with pytest.raises(TypeError):
            config_dict = deepcopy(base_config_dict)
            config_dict["type"] = "from_set_param"
            config_dict["transform"] = list(
                config_dict["transforms"].values())[0]
            del config_dict["transforms"]
            config_dict["set_arg"] = {"k1": {"x": 1}, "k2": {"x": 2}}
            Dataset.from_params(Params(config_dict))
Esempio n. 27
0
    def test_write_read_from_file(self):
        config_dict = {"test": "hello"}
        params = Params(config_dict)
        assert params.as_dict() == config_dict

        write_path = self.TEMPORARY_DIR / "dummy_config.json"
        params.to_file(str(write_path))

        params2 = Params.from_file(str(write_path))

        assert params.as_dict() == params2.as_dict()

        assert params.pop("test") == "hello"
        assert params.pop("test2", "none") == "none"
        with pytest.raises(ConfigurationError):
            params.pop("test")
Esempio n. 28
0
    def test_encoders_from_params(self):
        available_decoders = Decoder.get_available()
        assert "pan" in available_decoders
        channels = [3, 6, 12, 24, 48]
        num_channels = 16

        xs = [
            torch.zeros(4, c, 100 // (i + 1), 100 // (i + 1)).normal_()
            for i, c in enumerate(channels)
        ]

        n_classes = 8
        params = Params(
            {
                "type": "pan",
                "encoder_channels": channels,
                "decoder_channels_size": num_channels,
                "num_classes": n_classes,
            }
        )
        decoder = Decoder.from_params(params)
        assert decoder.fpa.pooling_branch[1][0].in_channels == channels[-1]
        assert decoder.fpa.pooling_branch[1][0].out_channels == num_channels
        assert decoder.gau3.process_high[1][0].in_channels == num_channels
        assert decoder.gau3.process_high[1][0].out_channels == num_channels
        assert decoder.gau3.process_low[0].in_channels == channels[-4]
        assert decoder.gau3.process_low[0].out_channels == num_channels
        assert decoder.logits[0].in_channels == num_channels
        assert decoder.logits[0].out_channels == n_classes
        decoder.forward(*xs)

        params = Params(
            {
                "type": "pan",
                "encoder_channels": channels,
                "decoder_channels_size": num_channels,
            }
        )

        with pytest.raises(ConfigurationError):
            Decoder.from_params(params)

        params = Params(
            {
                "type": "pan",
                "encoder_channels": channels,
                "decoder_channels_size": num_channels,
                "num_classes": n_classes,
                "normalization": {"type": "batch_renorm_2d"},
                "activation": {"type": "leaky_relu", "inplace": True},
                "gau_activation": {"type": "swish"},
                "upscale_mode": "nearest",
            }
        )

        decoder = Decoder.from_params(params)

        assert isinstance(decoder.gau3.process_low[2], BatchRenorm2d)
        assert isinstance(decoder.gau3.process_low[1], torch.nn.LeakyReLU)
        assert decoder.gau3.process_high[1][1]._get_name() == "Swish"
        decoder.forward(*xs)
Esempio n. 29
0
    def test_steps_scheduler(self):
        named_parameters = [("x", torch.nn.Parameter())]
        lr = 10
        opt = Optimizer.from_params(Params({
            "type": "sgd",
            "lr": lr
        }),
                                    model_params=named_parameters)

        step_size = 10
        gamma = 0.1
        sched_params = {"type": "step", "step_size": step_size, "gamma": gamma}
        sched = Scheduler.from_params(Params(sched_params), optimizer=opt)

        assert sched.get_last_lr()[0] == lr
        for _ in range(step_size - 1):
            opt.step()
            sched.step()
            assert sched.get_last_lr()[0] == lr
        opt.step()
        sched.step()
        assert np.allclose(sched.get_last_lr()[0], lr * gamma)

        lr = 10
        opt = Optimizer.from_params(Params({
            "type": "sgd",
            "lr": lr
        }),
                                    model_params=named_parameters)
        gamma = 0.1
        sched_params = {
            "type": "multi_step",
            "milestones": [5, 20],
            "gamma": gamma
        }
        sched = Scheduler.from_params(Params(sched_params), optimizer=opt)

        assert sched.get_last_lr()[0] == lr
        for _ in range(4):
            opt.step()
            sched.step()
            assert sched.get_last_lr()[0] == lr
        opt.step()
        sched.step()
        assert np.allclose(sched.get_last_lr()[0], lr * gamma)
        for _ in range(14):
            sched.step()
            opt.step()
            assert np.allclose(sched.get_last_lr()[0], lr * gamma)
        opt.step()
        sched.step()
        assert np.allclose(sched.get_last_lr()[0], lr * gamma**2)

        lr = 10
        opt = Optimizer.from_params(Params({
            "type": "sgd",
            "lr": lr
        }),
                                    model_params=named_parameters)

        gamma = 0.1

        sched_params = {"type": "exponential", "gamma": gamma}
        sched = Scheduler.from_params(Params(sched_params), optimizer=opt)

        assert sched.get_last_lr()[0] == lr
        for i in range(50):
            opt.step()
            sched.step()
            assert np.allclose(sched.get_last_lr()[0], lr * gamma**(i + 1))
Esempio n. 30
0
    def test_pop_nested_param(self):
        config_dict = {"model": {"type": "test", "other_param": 1}}

        params = Params(config_dict)

        assert isinstance(params.pop("model"), Params)