Esempio n. 1
0
def test_addition():
    from diagram.diagram import MTBDD, EVBDD

    mat1 = np.array([[1, 7, 0], [0, -1, 0], [2, 8, 1], [1, 5, 0], [1, 5, 0], [1, 5, 0], [1, 15, 0]], dtype=float)
    print mat1 + mat1
    print('MTBDD:')
    mtbdd = MTBDD()
    node1 = mtbdd.create(mat1, 0)
    node2 = mtbdd.create(mat1, 0)
    from diagram.operations.computations import add_diagrams

    node3 = add_diagrams(node1, node2)
    print node3.to_matrix(7, True)
    print('EVBDD:')
    evbdd = EVBDD()
    node4 = evbdd.create(mat1, 0)
    node5 = evbdd.create(mat1, 0)
    from diagram.operations.computations import diagram_sum

    node6 = add_diagrams(node4, node5)
    print node6.to_matrix(7, True)
    print('summing the diagrams:')
    print mat1
    print diagram_sum(node1)
    print diagram_sum(node4)
    print np.sum(mat1)
    print node4.nodes
    node6.plot('ev-add')
    node3.plot('mt-add')
Esempio n. 2
0
def test_power_method_sparse(iterations, episodes, max_size, sparsity):
    for ep in range(episodes):
        # initialization
        vec_size = np.random.random_integers(10, high=max_size)
        vec = np.random.rand(vec_size, 1)
        mat = np.multiply(np.random.rand(vec_size, vec_size), np.random.rand(vec_size, vec_size) > sparsity) + \
              np.random.rand(vec_size, vec_size) * np.identity(vec_size)
        for it in range(iterations):
            # multiplying
            vec = np.dot(mat, vec)
            # normalizing
            vec /= np.linalg.norm(vec)
            # creating the BDD representations
            from diagram.diagram import MTBDD, EVBDD
            mtbdd = MTBDD()
            evbdd = EVBDD()
            node_mt = mtbdd.create(
                np.round(config.precision_elements / np.max(vec) * vec,
                         config.precision_round), 0)
            node_ev = evbdd.create(
                np.round(config.precision_elements / np.max(vec) * vec,
                         config.precision_round), 0)
            c_mt = node_mt.complexity()
            c_ev = node_ev.complexity()
            # storing the complexity
            store_results('power-sparse', 'mat', ep, vec_size)
            store_results('power-sparse', 'mtbdd', ep, c_mt)
            store_results('power-sparse', 'evbdd', ep, c_ev)
Esempio n. 3
0
def test_addition():
    from diagram.diagram import MTBDD, EVBDD

    mat1 = np.array([[1, 7, 0], [0, -1, 0], [2, 8, 1], [1, 5, 0], [1, 5, 0],
                     [1, 5, 0], [1, 15, 0]],
                    dtype=float)
    print mat1 + mat1
    print('MTBDD:')
    mtbdd = MTBDD()
    node1 = mtbdd.create(mat1, 0)
    node2 = mtbdd.create(mat1, 0)
    from diagram.operations.computations import add_diagrams

    node3 = add_diagrams(node1, node2)
    print node3.to_matrix(7, True)
    print('EVBDD:')
    evbdd = EVBDD()
    node4 = evbdd.create(mat1, 0)
    node5 = evbdd.create(mat1, 0)
    from diagram.operations.computations import diagram_sum

    node6 = add_diagrams(node4, node5)
    print node6.to_matrix(7, True)
    print('summing the diagrams:')
    print mat1
    print diagram_sum(node1)
    print diagram_sum(node4)
    print np.sum(mat1)
    print node4.nodes
    node6.plot('ev-add')
    node3.plot('mt-add')
Esempio n. 4
0
def test_new_implementation():
    from diagram.diagram import MTBDD

    mat1 = np.array([[1, 2, 0], [0, 3, 0], [0, 4, 1], [1, 5, 0], [1, 5, 0], [1, 5, 0], [1, 5, 0]])
    mtbdd = MTBDD()
    node = mtbdd.create(mat1, 0)
    print node.to_matrix(7)
    print node.get_subdiagrams(5)
Esempio n. 5
0
def test_new_implementation():
    from diagram.diagram import MTBDD

    mat1 = np.array([[1, 2, 0], [0, 3, 0], [0, 4, 1], [1, 5, 0], [1, 5, 0],
                     [1, 5, 0], [1, 5, 0]])
    mtbdd = MTBDD()
    node = mtbdd.create(mat1, 0)
    print node.to_matrix(7)
    print node.get_subdiagrams(5)
Esempio n. 6
0
def test_multiplication():
    from diagram.diagram import MTBDD, EVBDD

    mat1 = np.array([[1, 7, 0], [0, -1, 0], [2, 8, 1], [1, 5, 0], [1, 5, 0],
                     [1, 5, 0], [1, 15, 0]],
                    dtype=float)
    print mat1
    print 'Scalar Multiplication: ~~~~~~~~~~~~~~'
    print mat1 * 2.5
    print('MTBDD:')
    from diagram.operations.computations import scalar_multiply_diagram, elementwise_multiply_diagrams_evbdd, \
        elementwise_multiply_diagrams_mtbdd, multiply_by_column_vector, multiply_diagram

    mtbdd = MTBDD()
    node1 = mtbdd.create(mat1, 0)
    node2 = scalar_multiply_diagram(node1, 2.5)
    print node2.to_matrix(7, True)
    print('EVBDD:')
    evbdd = EVBDD()
    node4 = evbdd.create(mat1, 0)
    node5 = scalar_multiply_diagram(node4, 2.5)
    print node5.to_matrix(7, True)
    print 'Elementwise Multiplication: ~~~~~~~~~'
    print np.multiply(mat1, mat1)
    print('MTBDD:')
    node3 = elementwise_multiply_diagrams_mtbdd(node1, node1)
    # node3.plot('mtbdd')
    print node3.to_matrix(7, True)
    print('EVBDD:')
    node6 = elementwise_multiply_diagrams_evbdd(node4, node4)
    print node6.to_matrix(7, True)
    # node6.plot('evbdd')
    vec1 = np.array([1.0, 2.0, 3.0])
    vnode_mt = mtbdd.create(vec1, 0)
    vnode_ev = evbdd.create(vec1, 0)
    print('Column-vector multiplication')
    print('Reference')
    print(np.dot(mat1, vec1))
    print('MTBDD')
    node7 = multiply_by_column_vector(node1, vnode_mt)
    print(node7.to_matrix(7, True))
    print('EVBDD')
    node8 = multiply_by_column_vector(node4, vnode_ev)
    print(node8.to_matrix(7, True))
    print('Matrix-multiplication')
    mat2 = np.array([[1, -2, 0], [2, -3, 0], [3, -4, -1]])
    print('Reference')
    print(np.dot(mat1, mat2))
    print('MTBDD')
    node11 = mtbdd.create(mat2, 0)
    node9 = multiply_diagram(node1, node11, mat1.shape[0])
    print(node9.to_matrix(3, True))
    print('EVBDD')
    node12 = evbdd.create(mat2, 0)
    node10 = multiply_diagram(node4, node12, mat1.shape[0])
    print(node10.to_matrix(7, True))
Esempio n. 7
0
def plot_graphs():
    # mat1 = np.array([[1, 4], [1, 4], [1, 4], [1, 4]])
    mat1 = np.random.random((4, 4))
    from diagram.binary import MTBDD, EVBDD
    mtbdd = MTBDD()
    evbdd = EVBDD()
    node1 = mtbdd.create(mat1, 0)
    node4 = evbdd.create(mat1, 0)
    # node1.plot('mt-st-r')
    node4.plot('random')
Esempio n. 8
0
def plot_graphs():
    # mat1 = np.array([[1, 4], [1, 4], [1, 4], [1, 4]])
    mat1 = np.random.random((4, 4))
    from diagram.binary import MTBDD, EVBDD
    mtbdd = MTBDD()
    evbdd = EVBDD()
    node1 = mtbdd.create(mat1, 0)
    node4 = evbdd.create(mat1, 0)
    # node1.plot('mt-st-r')
    node4.plot('random')
Esempio n. 9
0
def test_reduction():
    from diagram.binary import MTBDD, EVBDD

    mat1 = np.array([[1, 2, 0], [0, 1, 0], [2, 4, 1], [1, 5, 0], [1, 5, 0],
                     [1, 5, 0], [1, 5, 0]],
                    dtype=float)
    print mat1
    print('MTBDD:')
    mtbdd = MTBDD()
    node = mtbdd.create(mat1, 0)
    # import code; code.interact(local=dict(locals().items() + globals().items()))
    # print node.to_matrix(7)
    # print node.leaves
    node1 = mtbdd.create(mat1, 0)
    reduced = mtbdd.reduce(node1)
    # import code; code.interact(local=dict(locals().items() + globals().items()))
    red = reduced.leaves
    print node.to_matrix(7)
    print len(node.leaves)
    print reduced.to_matrix(7)
    print len(red)
    print('EVBDD:')
    mtbdd = EVBDD()
    node = mtbdd.create(mat1, 0)
    node1 = mtbdd.create(mat1, 0)
    reduced = mtbdd.reduce(node1)
    red = reduced.leaves
    print node.to_matrix(7)
    print len(node.leaves)
    print reduced.to_matrix(7)
    print len(red)
Esempio n. 10
0
def test_multiplication():
    from diagram.diagram import MTBDD, EVBDD

    mat1 = np.array([[1, 7, 0], [0, -1, 0], [2, 8, 1], [1, 5, 0], [1, 5, 0], [1, 5, 0], [1, 15, 0]], dtype=float)
    print mat1
    print 'Scalar Multiplication: ~~~~~~~~~~~~~~'
    print mat1 * 2.5
    print('MTBDD:')
    from diagram.operations.computations import scalar_multiply_diagram, elementwise_multiply_diagrams_evbdd, \
        elementwise_multiply_diagrams_mtbdd, multiply_by_column_vector, multiply_diagram

    mtbdd = MTBDD()
    node1 = mtbdd.create(mat1, 0)
    node2 = scalar_multiply_diagram(node1, 2.5)
    print node2.to_matrix(7, True)
    print('EVBDD:')
    evbdd = EVBDD()
    node4 = evbdd.create(mat1, 0)
    node5 = scalar_multiply_diagram(node4, 2.5)
    print node5.to_matrix(7, True)
    print 'Elementwise Multiplication: ~~~~~~~~~'
    print np.multiply(mat1, mat1)
    print('MTBDD:')
    node3 = elementwise_multiply_diagrams_mtbdd(node1, node1)
    # node3.plot('mtbdd')
    print node3.to_matrix(7, True)
    print('EVBDD:')
    node6 = elementwise_multiply_diagrams_evbdd(node4, node4)
    print node6.to_matrix(7, True)
    # node6.plot('evbdd')
    vec1 = np.array([1.0, 2.0, 3.0])
    vnode_mt = mtbdd.create(vec1, 0)
    vnode_ev = evbdd.create(vec1, 0)
    print('Column-vector multiplication')
    print('Reference')
    print(np.dot(mat1, vec1))
    print('MTBDD')
    node7 = multiply_by_column_vector(node1, vnode_mt)
    print(node7.to_matrix(7, True))
    print('EVBDD')
    node8 = multiply_by_column_vector(node4, vnode_ev)
    print(node8.to_matrix(7, True))
    print('Matrix-multiplication')
    mat2 = np.array([[1, -2, 0], [2, -3, 0], [3, -4, -1]])
    print('Reference')
    print(np.dot(mat1, mat2))
    print('MTBDD')
    node11 = mtbdd.create(mat2, 0)
    node9 = multiply_diagram(node1, node11, mat1.shape[0])
    print(node9.to_matrix(3, True))
    print('EVBDD')
    node12 = evbdd.create(mat2, 0)
    node10 = multiply_diagram(node4, node12, mat1.shape[0])
    print(node10.to_matrix(7, True))
Esempio n. 11
0
def general_tests():
    from diagram.diagram import MTBDD, EVBDD

    mtbdd = MTBDD()
    evbdd = EVBDD()
    mat1 = np.array([[1, 2], [3, 4], [5, 6], [7, 8]])
    node1 = mtbdd.create(mat1, 0)
    node4 = evbdd.create(mat1, 0)
    node1.plot('mt-st-r')
    node4.plot('ev-st-r')
    node1 = mtbdd.create(mat1, 0, False)
    node4 = evbdd.create(mat1, 0, False)
    node1.plot('mt-st-nr')
    node4.plot('ev-st-nr')
Esempio n. 12
0
def test_reduction():
    from diagram.binary import MTBDD, EVBDD

    mat1 = np.array([[1, 2, 0], [0, 1, 0], [2, 4, 1], [1, 5, 0], [1, 5, 0], [1, 5, 0], [1, 5, 0]], dtype=float)
    print mat1
    print('MTBDD:')
    mtbdd = MTBDD()
    node = mtbdd.create(mat1, 0)
    # import code; code.interact(local=dict(locals().items() + globals().items()))
    # print node.to_matrix(7)
    # print node.leaves
    node1 = mtbdd.create(mat1, 0)
    reduced = mtbdd.reduce(node1)
    # import code; code.interact(local=dict(locals().items() + globals().items()))
    red = reduced.leaves
    print node.to_matrix(7)
    print len(node.leaves)
    print reduced.to_matrix(7)
    print len(red)
    print('EVBDD:')
    mtbdd = EVBDD()
    node = mtbdd.create(mat1, 0)
    node1 = mtbdd.create(mat1, 0)
    reduced = mtbdd.reduce(node1)
    red = reduced.leaves
    print node.to_matrix(7)
    print len(node.leaves)
    print reduced.to_matrix(7)
    print len(red)
Esempio n. 13
0
def general_tests():
    from diagram.diagram import MTBDD, EVBDD

    mtbdd = MTBDD()
    evbdd = EVBDD()
    mat1 = np.array([[1, 2], [3, 4], [5, 6], [7, 8]])
    node1 = mtbdd.create(mat1, 0)
    node4 = evbdd.create(mat1, 0)
    node1.plot('mt-st-r')
    node4.plot('ev-st-r')
    node1 = mtbdd.create(mat1, 0, False)
    node4 = evbdd.create(mat1, 0, False)
    node1.plot('mt-st-nr')
    node4.plot('ev-st-nr')
Esempio n. 14
0
def test_power_method(iterations, episodes, max_size):
    for ep in range(episodes):
        # initialization
        vec_size = np.random.random_integers(10, high=max_size)
        vec = np.random.rand(vec_size, 1)
        mat = np.random.rand(vec_size, vec_size)
        for it in range(iterations):
            # multiplying
            vec = np.dot(mat, vec)
            # normalizing
            vec /= np.linalg.norm(vec)
            # creating the BDD representations
            from diagram.diagram import MTBDD, EVBDD
            mtbdd = MTBDD()
            evbdd = EVBDD()
            node_mt = mtbdd.create(np.round(config.precision_elements/np.max(vec)*vec, config.precision_round), 0)
            node_ev = evbdd.create(np.round(config.precision_elements/np.max(vec)*vec, config.precision_round), 0)
            c_mt = node_mt.complexity()
            c_ev = node_ev.complexity()
            # storing the complexity
            store_results('power', 'mat', ep, vec_size)
            store_results('power', 'mtbdd', ep, c_mt)
            store_results('power', 'evbdd', ep, c_ev)